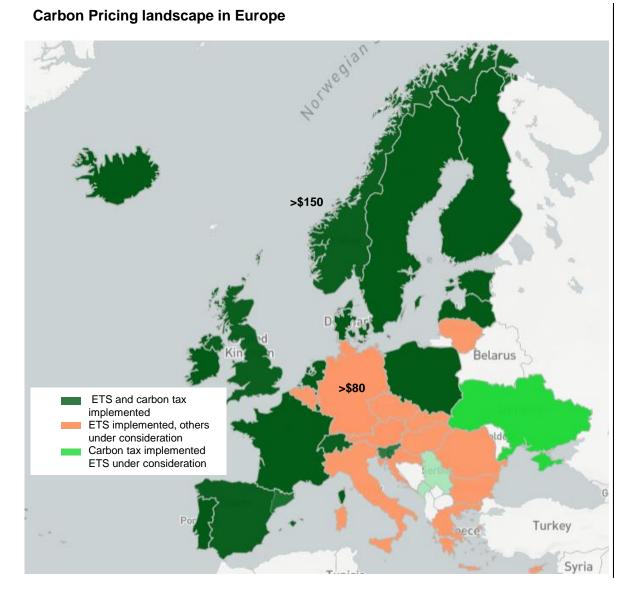
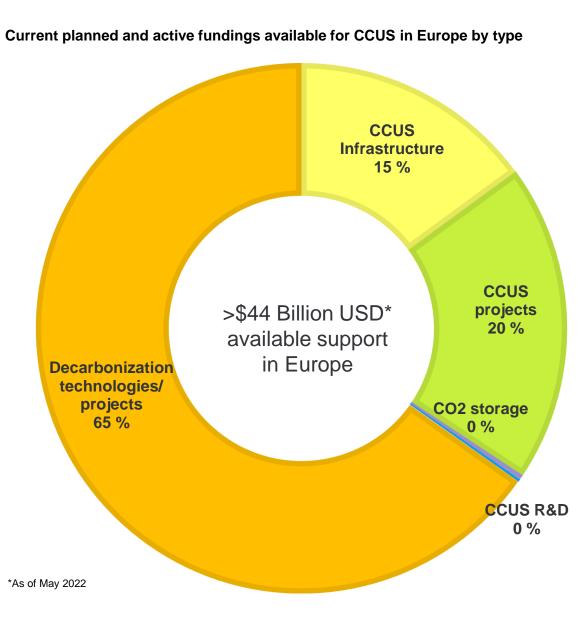


THE EUROPEAN CCS MARKET

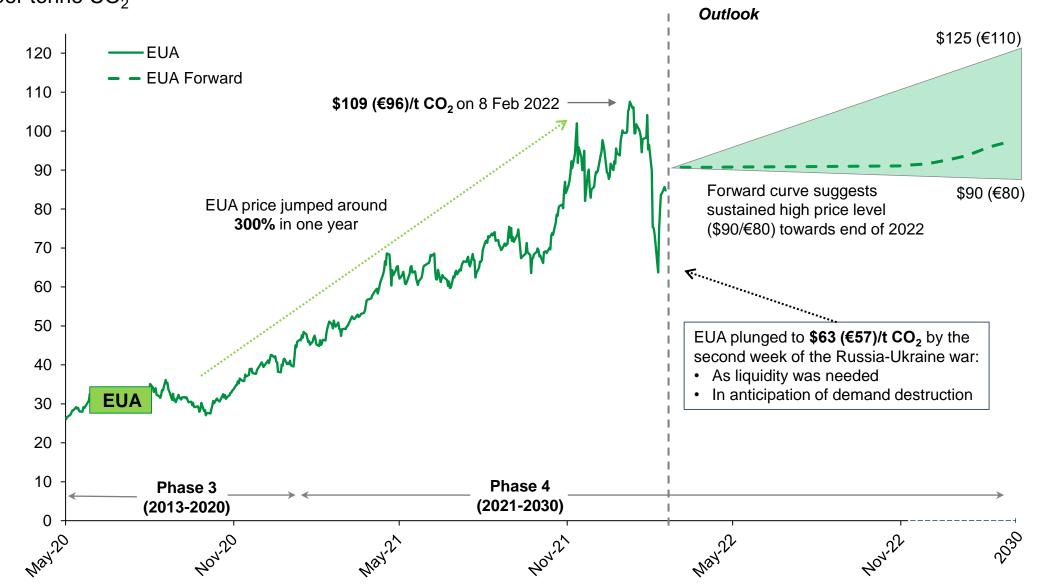
THE CCS OUTLOOK IN POLITICALLY UNCERTAIN WORLD

YVONNE LAM, HEAD OF CCUS RESEARCH

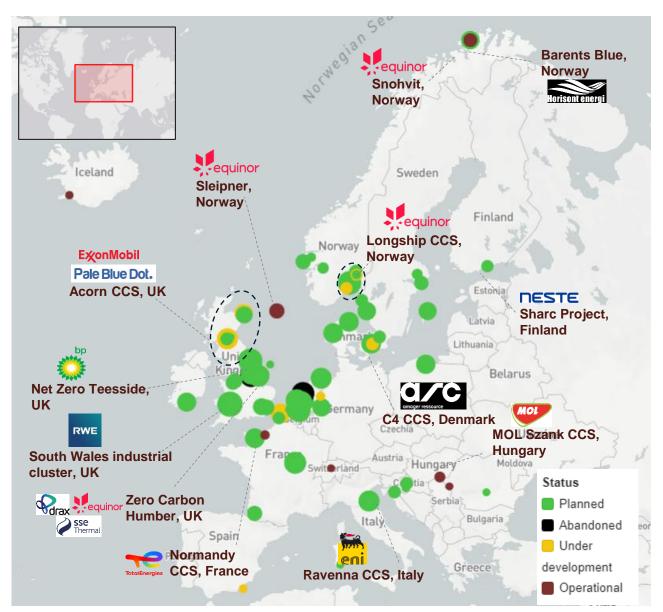

MAY 2022


Agenda

- 1) Carbon pricing and investment support in Europe
- 2) CCUS project landscape and trend
- 3) Impact of Russia's invasion of Ukraine on CCUS market
- 4) Short-medium-term demand and cost outlook

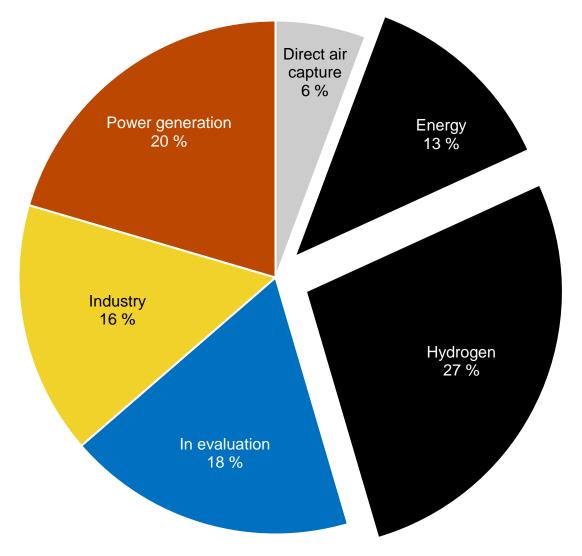

As penalty for emission increase, available support for CCUS follow through

Source: Rystad Energy CCUS dashbaord


Moving into era of high ETS prices in Europe USD per tonne CO₂

Source: Rystad Energy research and analysis, Bloomberg, European Commission

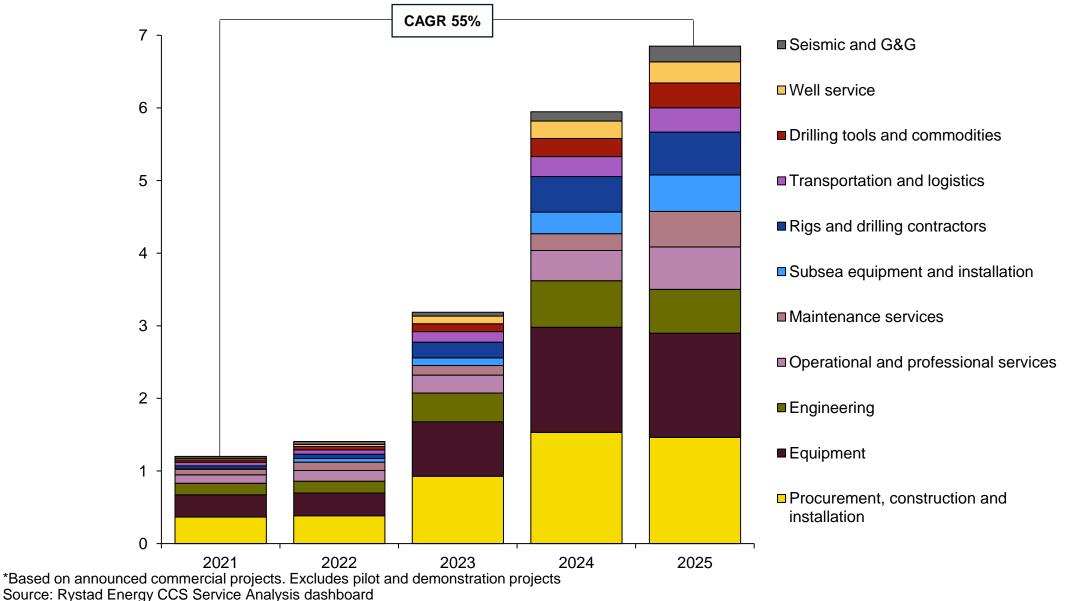
Boomed in commercial and pilot projects driven by policies



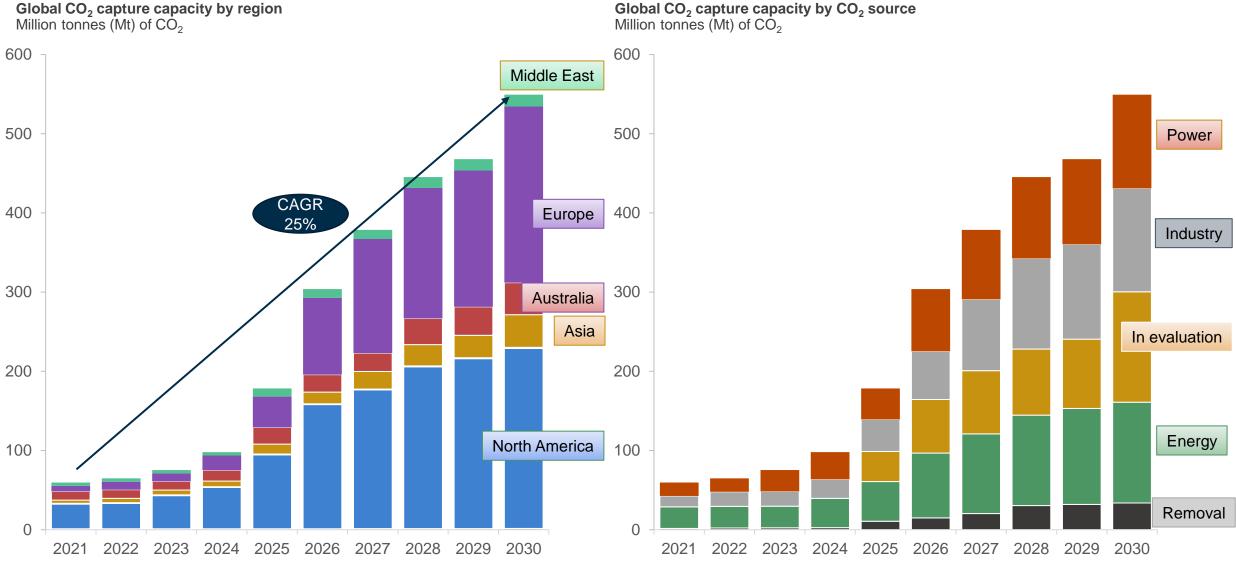
- Europe has the highest new project count in 2021
- More than 40% of global project in pipeline are in Europe
- Clusters projects and hubs will continue to drive the European market
- Boom in pilot projects, especially in the UK with almost half of the project focused on DAC technology
- 19 projects expected to reach FID stage this year, but no project has reached that milestone so far
- Moving from project planning stage to project development stage

Announced CCUS projects* by carbon source in Europe

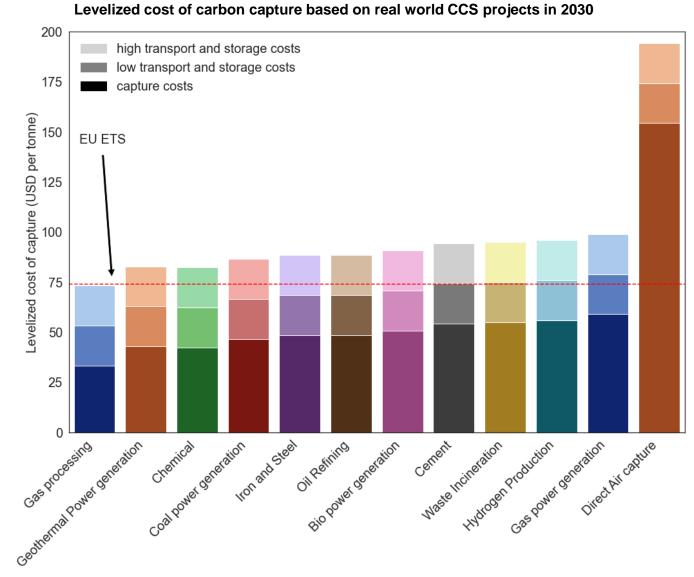
Share (%) of total number of projects



- High gas prices could lead to a shortage of natural gas supply for blue hydrogen, hence delay in project development
- Fluctuations in natural gas prices will not have a huge impact on the production cost
- High CCUS project announcements from hydrogen production in the region is not likely repeat itself
- Not likely to see any new CCUS projects linked to fossil fuel power plants moving forward


*Excluding abandoned projects Source: Rystad Energy CCUS dashboard

Europe CCS purchases* by service segment USD billion


Positive outlook for CCUS project, but far from achieving final target

Global CO₂ capture capacity by CO₂ source

Cost parity for most CCS projects will fall between \$75 to \$100/tonne of CO2 by 2030

Source: Rystad Energy CCUS Dashboard

Rystad Energy is an independent energy consulting services and business intelligence data firm offering global databases, strategy advisory and research products for energy companies and suppliers, investors, investment banks, organizations, and governments. Rystad Energy's headquarters are located in Oslo, Norway.

Headquarters

Rystad Energy Fjordalléen 16, 0250 Oslo, Norway

Americas +1 (281)-231-2600 EMEA +47 908 87 700 Asia Pacific +65 690 93 715

Email: support@rystadenergy.com

© Copyright. All rights reserved.

WiseEuropa

Ministerstwo Rozwoju, Pracy i Technologii

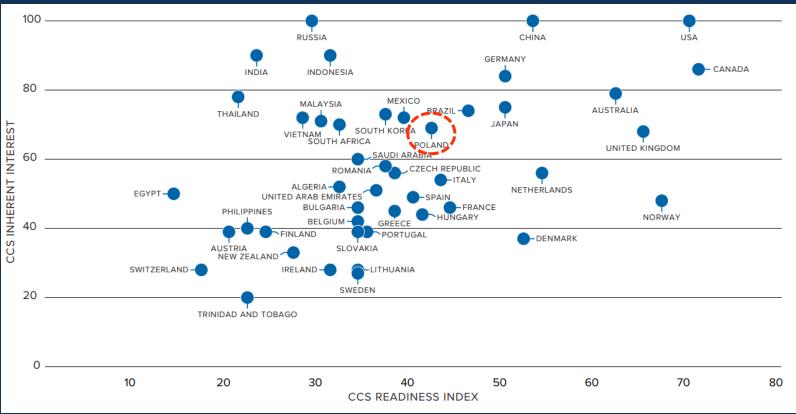
Paweł Gładysz, PhD AGH University of Science and Technology AGH UST Energy Center

Preparation of Poland's CCUS strategy and establishment of the first CCS Cluster in Poland

Are we ready for the CCS/CCU technologies in Poland?

CCS Readiness Index (CCS-RI):

- *policy developments*
- legal and regulatory frameworks
- geological CO2 storage vs inherent CCS interest


For Poland (2018):

- CCS inherent interest: 62 / 100 points
- CCS-RI: 42 / 100 points, incl.:
 - geological CO₂ storage: 68 / 100 points
 - legal framework: 51 / 100 points
 - policy development: 7 / 100 points

Source and more:

https://www.globalccsinstitute.com/resources/publications-reports-research/the-carbon-capture-and-storage-readiness-index-2018-is-theworld-ready-for-carbon-capture-and-storage/

Narodowe Centrum Badań i Rozwoju

Strategy development for CO₂ capture, transport, utilization and storage in Poland, and pilot implementation of Polish CCUS Cluster

Acronym: CCUS.pl

Consortium:

- AGH University of Science and Technology (leader)
- Ministry of Economic Development and Technology (implementing entity)
- WiseEuropa Institute (independent think-tank)

Programme: **GOSPOSTRATEG III of the National Centre for Research and Development** (Poland) **Project start**: 31st of March, 2021 **Duration**: 36 months

Ministerstwo Rozwoju, Pracy i Technologii Revealed a state of the state o

Project research team capacity:

- R&D project manager: **Prof. Wojciech Nowak**
- general project manager: **Dr. Paweł Gładysz**

AGH University of Science and Technology - over 40 experts in 3 research teams:

- technological research teams (CO₂ capture, CO₂ utilization, CO₂ transport, CO₂ storage, power and industrial installations),
- comprehensive assessment research team (economic and environmental analysis, risk management),
- process modelling research team (models development, simulations and optimizations).

WiseEurope Institute – over 10 experts in macroeconomic and system models. **Ministry of Economic Development and Technology** – experts in law and regulatory framework.

Rectangle Radar

Main project goals:

- 1. preparation of the strategy for the development of CCUS technology in Poland,
- 2. preparation of appropriate legal and regulatory framework stimulating this development in an sustainable manner, taking into account economic, social and environmental aspects,
- 3. preparation of the first **Polish CCUS Cluster**.

Other goals:

- 4. development, validation and complementary demonstration of research tools for the selection and assessment of the impact of CCUS technologies at the level of individual installations, as well as energy and industrial clusters from the technological, economic, environmental and socio-economic point of view;
- 5. preparation of a number of **reports and studies** on the key aspects of the development of CCUS technologies in Poland;
- 6. preparation and implementation of a series of activities disseminating the effects of the project dedicated to various groups of stakeholders.

Ministerstwo Rozwoju, Pracy i Technologii R Narodowe Centrum Badań i Rozwoju

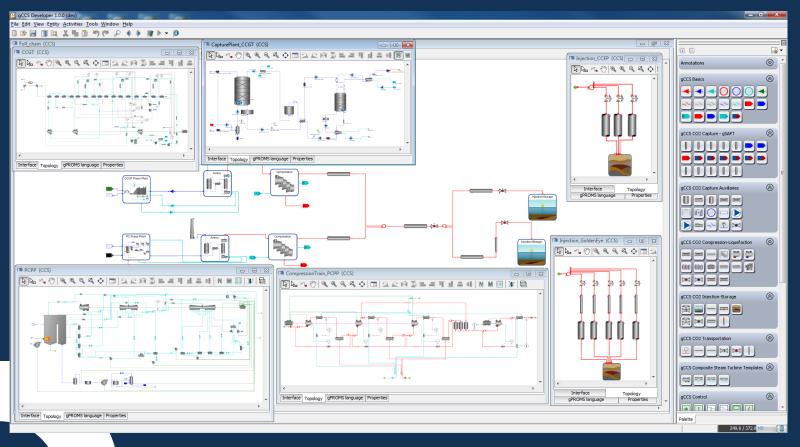
Phase A (first 18 months) – main outcomes

CCUS technological database.

- Assessment methods for individual installations and CCUs clusters.
- Universal process model for simulation and optimization studies of CCUS clusters.

National energy cccus
 energy cccus
 energy indus
 Macrineling
 techrineling

- National-level fuel and energy model including CCUS technologies (in energy sector and industry).
- Macroeconomic model including CCUS technologies in an integrated approach.



gPROMS software for the process modeling and optimization of CCUS installations and clusters.

Specialized research team (12 people) at AGH University devoted to the process simulations and optimization of CCUS installations and cluster using gPROMS software.

Team experience:

- participation in extensive training by software provider (Siemens PSE Enterprise),
- case studies development for Polish energy sector and industry,
- previous R&D&I projects.

Narodowe Centrum Badań i Rozwoju

Phase B (second 18 months, starts in October 2022) – main outcomes

HD

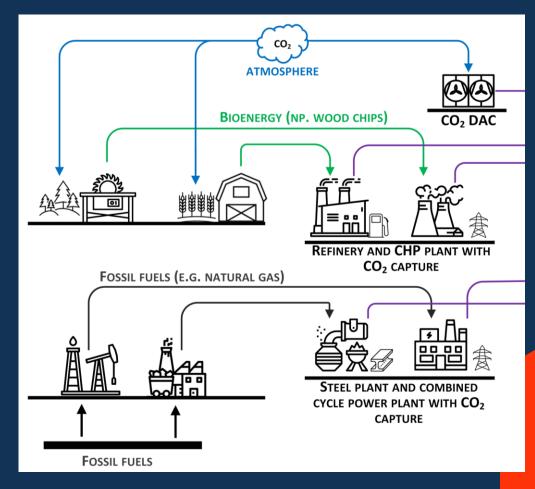
- Preparation of technological procedures and guidelines for the implementation of CCUS technologies.
- Pilot of the first Polish **CCUS cluster**.
- Dissemination activities: thematic seminars, forum, online course.

σ <u> WiseEurop</u>

 Quantitative and qualitative analyses in the area of CCUS technologies.

- Reports supporting the implementation of the strategy.
- Information policy framework.
- Dissemination activities: thematic seminars.

- development of CCUS technologies in Poland.
- Draft legal and regulatory framework in the area of technology development and energy-industrial clusters of CCUS technologies.
- Dissemination activities: thematic seminars.

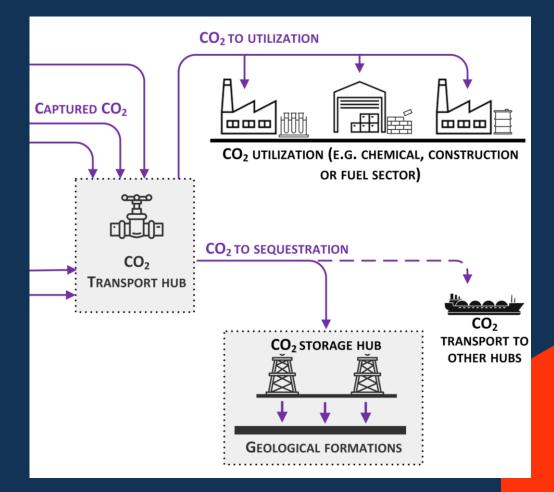


Mini Prac

Ministerstwo Rozwoju, Pracy i Technologii _____ Narodowe Centrum Badań i Rozwoju

CCUS technologies analysed in the project:

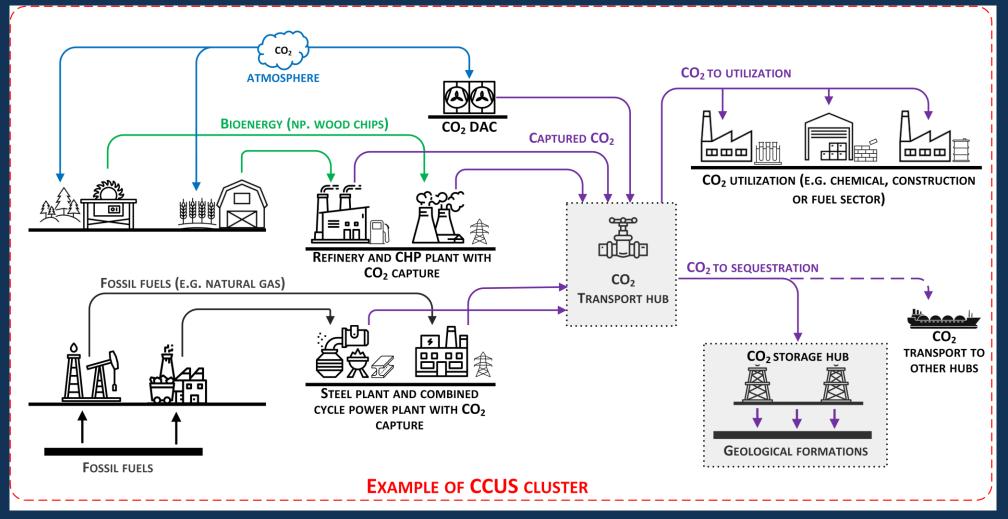
- CO₂ capture from **power and CHP plants** (main focus on retrofit of existing plants);
- CO₂ capture from industrial sources (including integrated steel mills, cement plants, refineries and other point sources of emissions to the atmosphere);
- technologies for capturing CO₂ from sources using bioenergy (BECCUS - Bio-Energy CCUS);
- technologies for direct removal of CO₂ from the atmosphere (DAC - Direct Air Capture) and methods of their process integration



Narodowe Centrum Badań i Rozwoju

CCUS technologies analysed in the project:

- CO₂ transport technologies for various scales and distances (overground and submarine pipelines, tankers and cisterns), including transport hubs;
- technologies for the industrial use of CO₂ in the economy (e.g. hydrogen economy, production of synthetic fuels, enhanced oil and gas recovery; enhanced coal bed methane, mineralisation);
- technologies and locations for CO₂ storage in Poland, including cross-border cooperation and CO₂ storage hubs.



CCUS clusters to be analysed – theoretical case studies and first Polish CCUS cluster case study

Rarodo Badań

Future perspectives of CCUS.pl project

- New technologies from CCUS chain added to database always open for contributions from technology providers.
- New database for planned (at different stages) CCUS projects in Poland

 aggregation of what in happening in Poland to provide a "big picture" for administration and government.
- Ideas for industrial CCUS clusters for the process modelling in gPROMS and assessment of different configurations.
- CCUS.pl cluster organisation to aggregate and disseminate knowledge, as well as share experience, between involved stakeholders of CCUS projects.

Cluster agreement was sign in March 2022 between AGH University and WiseEurope Foundation (cluster founders). We are now starting to gather interested parties (stakeholders) to join.

During Phase B of the CCUS.pl project (starting from October 2022) we will foster the cluster development and use it as a main platform for project outcomes dissemination and consults for the CCUS strategy development.

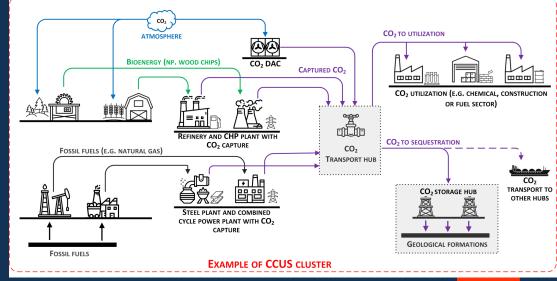
Cluster actions are part of the **Gospostrateg programme goals**, and so the preparation of the **pilot of the first Polish CCUS cluster**, thus building social capital, which in the future may constitute **a base for the further development of CCUS technology in Poland** and **act as a contact point for national and international partners** in one of the most important part of CCUS.pl project.

...

Strategy development for CO_2 capture, transport, utilization and storage in Poland, and pilot implementation of Polish CCUS Cluster

Actions planned as part of the cluster activities:

- stakeholders meetings and discussions (open dialog),
- individual support for CCS/CCU projects in Poland,
- consults on project reports in various areas of CCUS technologies development,
- consults on CCUS strategy for Poland developed within the project,
- consults on CCUS legislation developed within the project,
- dedicated seminars (minimum 7 events) and conferences (minimum 2 events first one in September 2022),
- newsletter and progress reports,
- knowledge share (outreach) with general public,


Narodowe Centrum Badań i Rozwoju

Actions planned as part of the cluster activities:

- database for planned CCS/CCU project in Poland,
- aggregation and **networking of stakeholders**,
- unified approach to public consults for CCUS legislation on Polish and EU level,
- base for real-life cluster propositions to be analysed within the project (Phase B of the project).

Prefeasibility study for Poland:

- min. 5 capture installations (power and industry sector),
- min. 2 utilization options included,
- CO₂ transport hub,
- CO₂ storage site (in-land in Poland),
- optional CO₂ transnational transport and storage.

Ministerstwo Rozwoju, Pracy i Technologii

Thank you for you attention.

pawel.gladysz@agh.edu.pl rzecznik@ccus.pl

AkerSolutions

Connected Carbon Enabling Permanent Storage At Large Scale

NORWEP Hydrogen & CCS Webinar – Europe Craig Harvey | Chief Engineer | Carbon Aker Solutions | Renewables

We solve global energy challenges for **future** generations

AkerSolutions

Broad participation across Aker Solutions for CCS projects

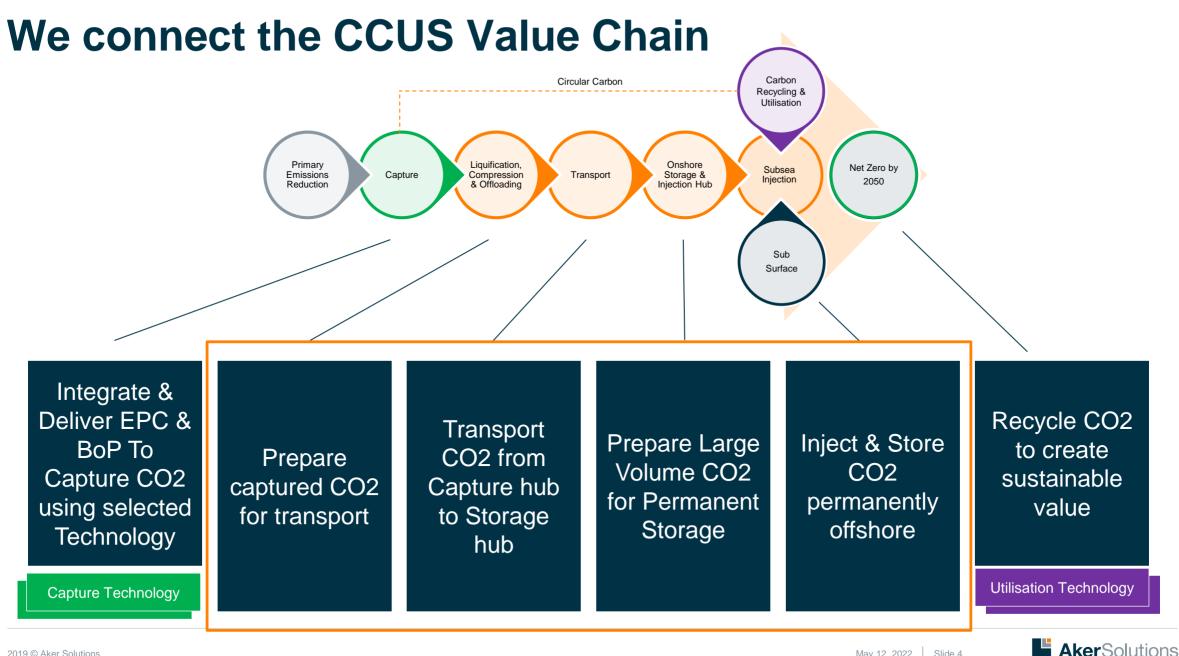
Engineering & Front End Marte Mogstad

Renewables Stephen Bull

Topside and **Facilities** Sturla Magnus

Electrification, Maintenance and Modifications Paal Eikeseth

Subsea Maria Peralta


Global Presence

15,000+ 20+ 50+ LOCATIONS

EMPLOYEES

COUNTRIES

Todays CCS Challenge

Connecting Carbon at MegaScale from A to B since 1996

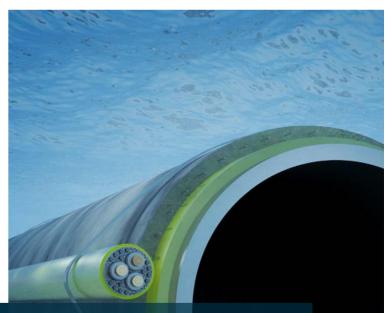
TRANSPORT

CAPTURE

STORAGE

Connecting Carbon at industrial scale since 1996

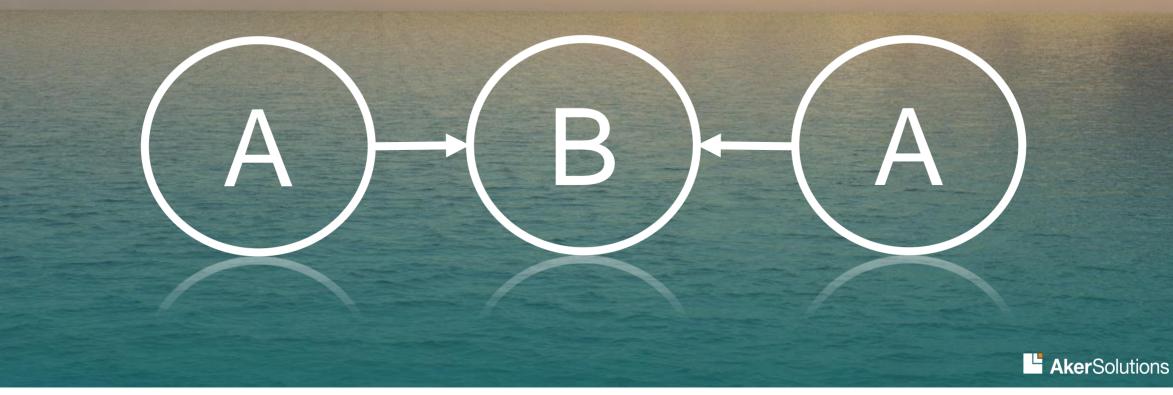
Sleipner Vest


Gas processing plant with CO₂ capture, compression and injection into shallow water reservoir

- 1,000,000 tons CO_2 captured p.a.
- FEED completion 1993
- EP+FC completion **1996**

TCM Mongstad

- EPC & Commissioning project for a CO₂ Technology Test Centre Mongstad for an Amine Plant
- 80,000 tons CO₂ captured p.a.


Snøhvit Pipeline

- Detail design and project management
- CO2 Pipeline
- Landfall
- Offshore Supervision

Tomorrows CCS Challenge

Connecting Carbon at GigaScale from A*N to B toward 2050

CO₂ transport and storage in the North Sea

- Onshore terminal with buffer storage, pump and heater
- Landfall
- 12" 110 km pipeline
- One injection well

Longship & Northern Lights

Full-scale CCS | Demonstration project

Onshore terminal in Øygarden, Hordaland

Fortum Oslo Varme AS Waste-to-energy plant

Norcem AS, Brevik Cement plant

> Capture of 400 kt/y Norcem Amine technology from ACC Includes CO₂ capture,

liquefaction and buffer storage (4 days)

- Transport by ships
- 700 km distance
- Liquefied state (15 barg, -26°C)

AkerSolutions

Northern Lights Onshore Plant

- EPC & Commissioning project
- Including the jetty for import of CO₂ from ships, storage tanks for intermediate storage of CO₂ and process systems for gas conditioning and subsea injection
- CO₂ subsea storage capacity:
 - Phase 1: 1,5M MtCO₂ p.a.
 - Phase 2: 5M MtCO₂ p.a
- Planned operation in 2024

Equinor

Northern Lights Plant Overview A European CO₂ transport and storage network

C.C.S.

AkerSolutions

Equinor

Northern Lights Subsea CO2 Injection

KerSolutions

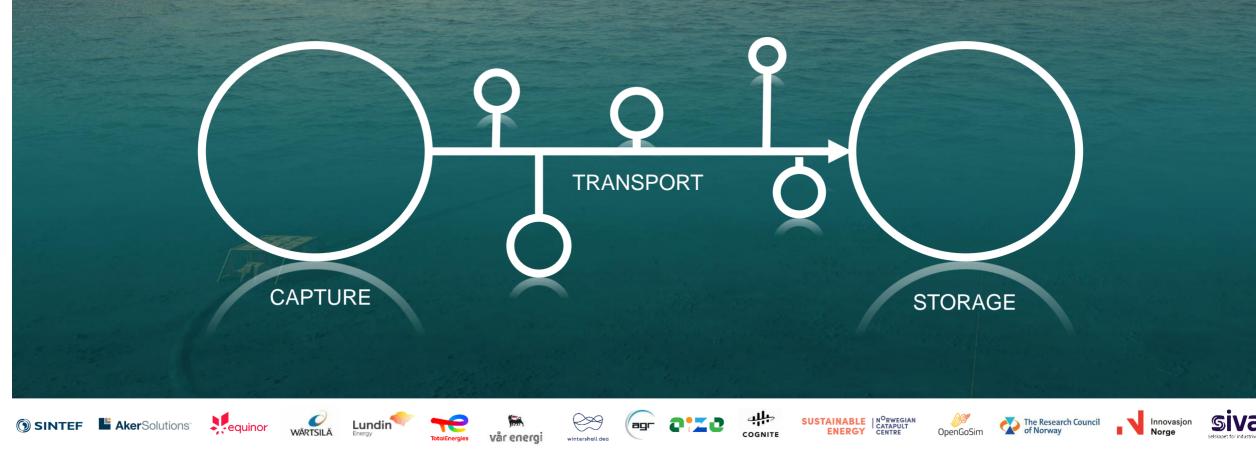
INTECTIONSPI

EARYWEL

6.6

/////

POWERING NET ZERO


Net Zero Teesside FEED

SE GP G SO PM ERL 12 PP slides TM by Doosan Restricted © Siemens Energy 2021

LINCCS Linking the CCS value chain from SOURCE TO SINK

SOURCE

OFFSHORE

MARITIME

Enabling Unmanned Offshore Capture Enabling Ship based Capture & Carbon Logistics

SINTEF LAkerSolutions Sequinor

s vår energi

wintershall dea

COGNITE

Linking the CCS value chain from SOURCE TO SINK at SCALE

AkerSolutions

Craig Harvey

Chief Engineer | Carbon Aker Solutions | Renewables

Mob: +47 92 08 85 83 craig.harvey@akersolutions.com

AkerSolutions

Northern Lights – becoming a reality

Birthe Nylund Sundt

CFO

Northern CO₂ transport & storage at scale ights NORTHERN LIGHTS SCOPE CO_2 capture Transport Receiving terminal Permanent storage Liquid CO₂ Intermediate onshore storage. CO_2 is injected into a saline aquifer. Capture from industrial plants. Liquefaction and temporary storage. Pipeline transport to offshore transported by ship. storage location. Ŧ 100 km 2 600m

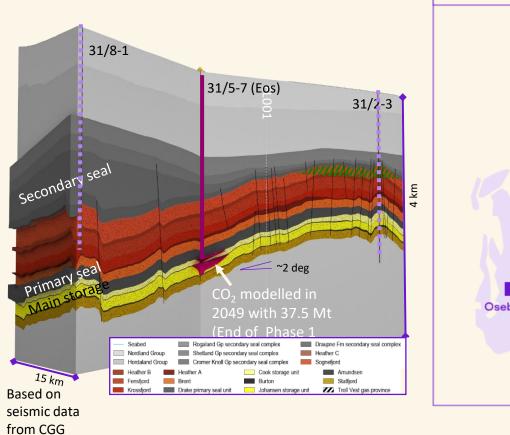
Receiving terminal Øygarden

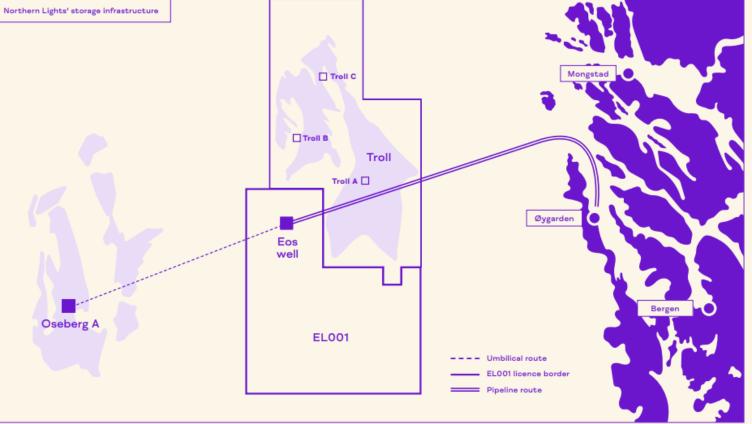
- \rightarrow Civil works completed
- \rightarrow Import jetty construction well under way
- \rightarrow Project office and visitor centre in in place
- \rightarrow Detail engineering and procurement ongoing
- \rightarrow Fabrication and installation of plant started
- \rightarrow Additional area for expansion included

Onshore facilities Øygarden

Fabrication activities

Fabrication of linepipe by Tenaris, Italy. Coating by Shawcor, Orkanger.





Detailed engineering ongoing (STASCO/Dalian China).

Northern Lights storage

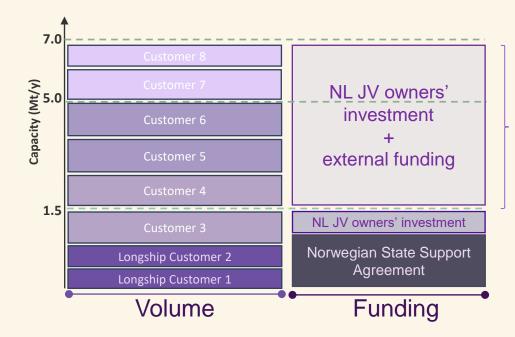
Building a market for CO₂ storage

Significant demand for storage capacity

\rightarrow European Commission concern:

• not sufficient storage capacity being developed

\rightarrow Overcoming challenges:

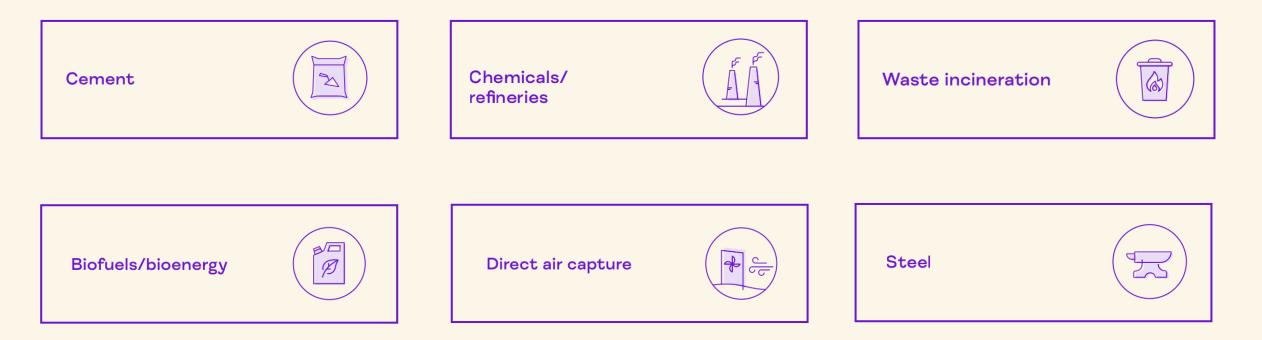

- Everything we do is new
- First contracts of this type
- LCO₂ ships are new
- Little/no operational experience
- Risks management
- Costs
- De-risking subsurface is expensive
- Regulatory requirements many firsts
- Northern Lights Test Pilots

→ Northern Lights Phase 1

- capacity to transport, inject and store up to 1.5 Mtpa of $\rm CO_2$

\rightarrow Northern Lights Phase 2

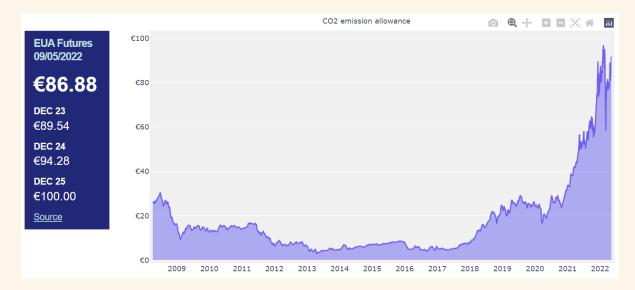
- capacity to transport, inject and store 5-7 Mtpa of $\rm CO_2$



Subject to FID

Strong potential but different levels of experience and maturity in respect to CCS

European CO₂ value chain


- \rightarrow Northern Lights is developing the first open source CO₂-transport and storage network.
- ightarrow Offering flexible ship based transport and permanent storage.
- ightarrow Discussions with potential customers ongoing.
- ightarrow Expecting to sign first commercial contract in 2022.

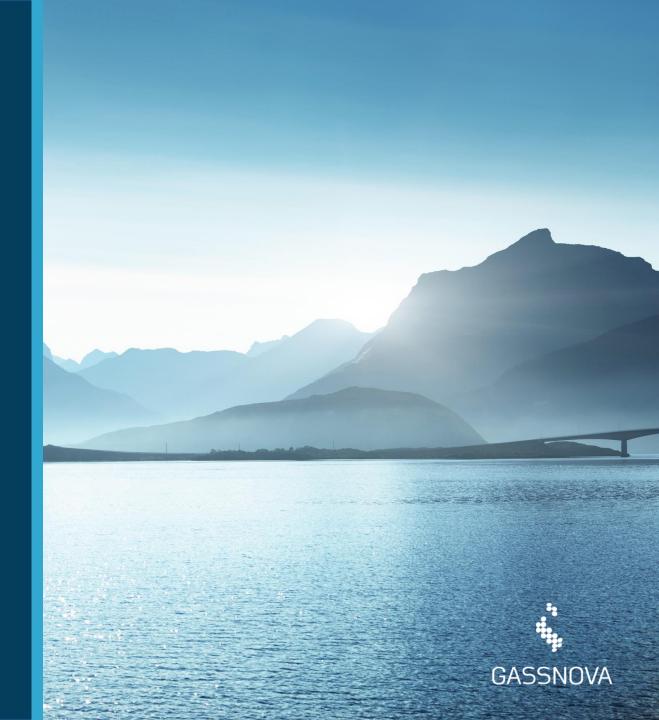
EU ETS important

- The high CO₂ price helps put CCS on the agenda but it is too early to say if it is triggering investment decisions.
- We are experiencing high interest from industrial companies in countries with CO₂ taxation schemes on top of ETS. Typically these countries also offer support mechanisms for realisation of industrial climate change mitigation initiatives.

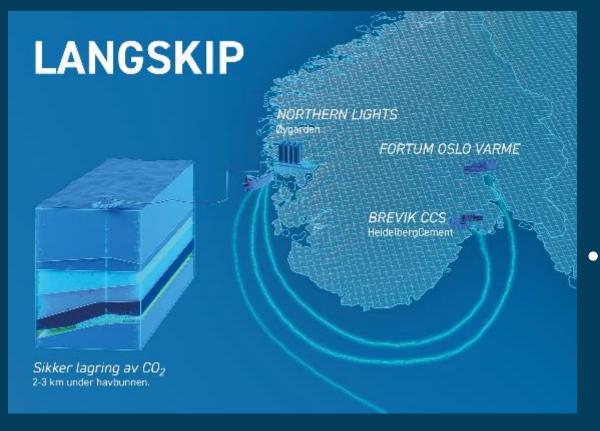
Northern Lights

EU ETS 9th May 2022

Source: <u>https://sandbag.be/index.php/carbon-price-viewer/</u>



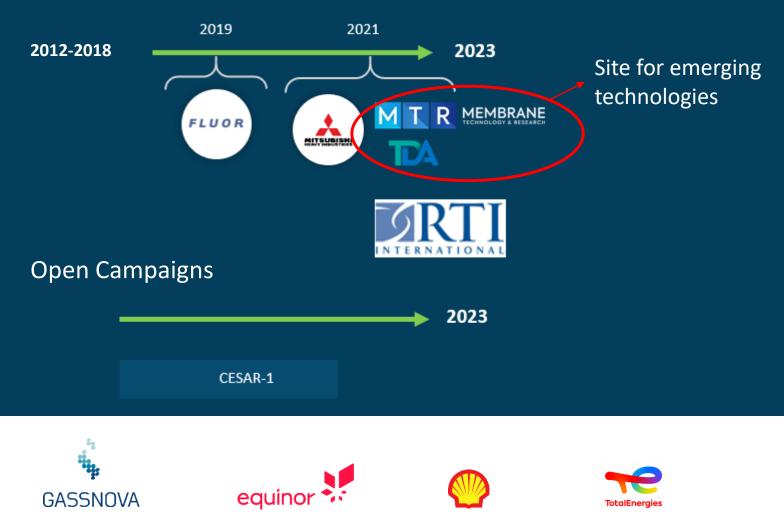
norlights.com


CCS in Norway

Audun Røsjorde,

Director CCS technology and knowledge hub

Longship Status



• Project under construction:

- Gassnova «project integrator»
- Progress according to plan, target startup of CCS chain in 2024
- Demolition and civil works ongoing at Norcem/Heidelberg cement plant
- Cost overrun likely at capture plant
- 2nd Capture plant Fortum Oslo Varme likely to fully join:
 - Retrofit of waste-to-energy plant
 - Securing financing through new owners
 - Potential start operations in 2026

TCM - Recent Test Campaigns

Proprietary Campaigns

Support from CLIMIT

- Idea studies (up to 50% support max. 200 kNOK)
- Technical-economic feasibility studies (maximum 50% support)
- Support for testing technology on a pilot scale (usually a maximum of 50% support)
- ACT4 call this summer

GASSNOVA

Electrochemical production of hydrogen from natural gas

Partners	CoorsTek Membrane Sciences Equinor, ExxonMobile, Total, Shell, Saudi Aramco, ENGIE, Sintef
Project	2019 – 2022 (Phase I & II)
Budget [MNOK]	39 & 31.6
CLIMIT [MNOK]	17 (44 %) & 15 (47.5%)

- Process intensification: reforming, water shift and H₂ compression in one step.
- Electricity as process energy no natural gas for heating
- Heat integration balances energy demand
- Scalable technology

Targeting:

- 90% efficiency
- 99,99% H₂ purity
- Close to 100% carbon capture

In addition to Longship...

- Hurdalsplattformen given focus to CCS on waste-to-energy
- Industrial clusters cooperate on studies and infrastructure
- Large-scale industrial CCS projects in early phase
- New cooperations for full value chain services
- More CO₂ storage under development

Hydrogen & CCS Webinar - Europe 11-12 May, 2022

Competitive, emission-free production of blue H2/Ammonia, efficient transportation and decarbonization

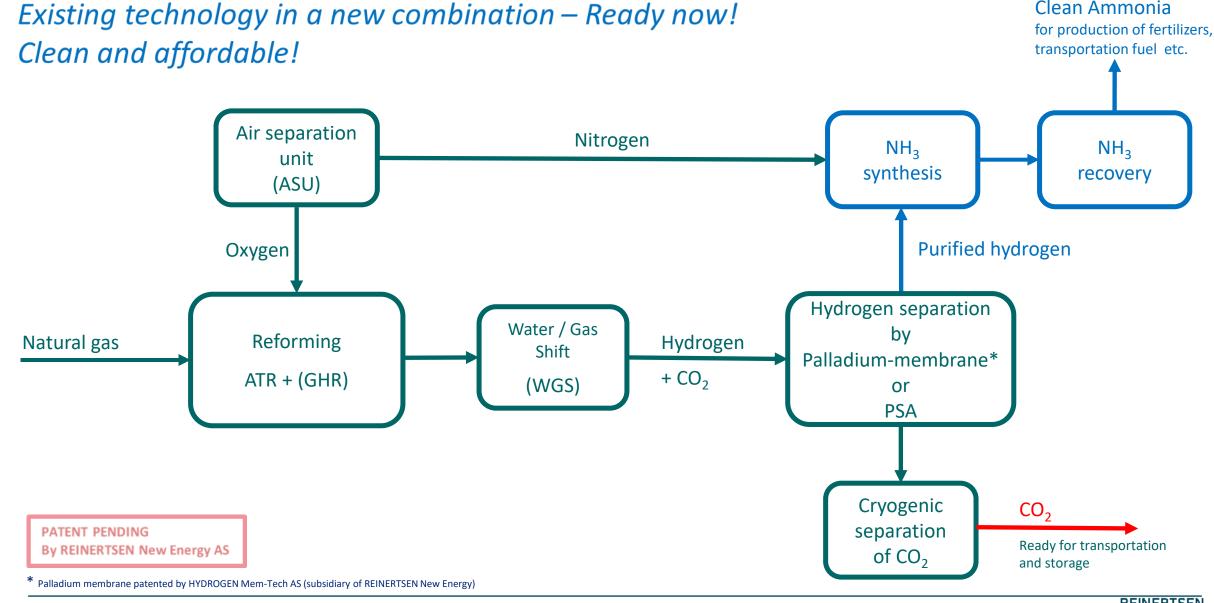
Torkild R. Reinertsen, PhD Chairman & Market Lead Hydrogen REINERTSEN New Energy AS torkild.reinertsen@rein-energy.com

REINERTSEN NEW ENERGY

.... Developing Clean Energy Solutions

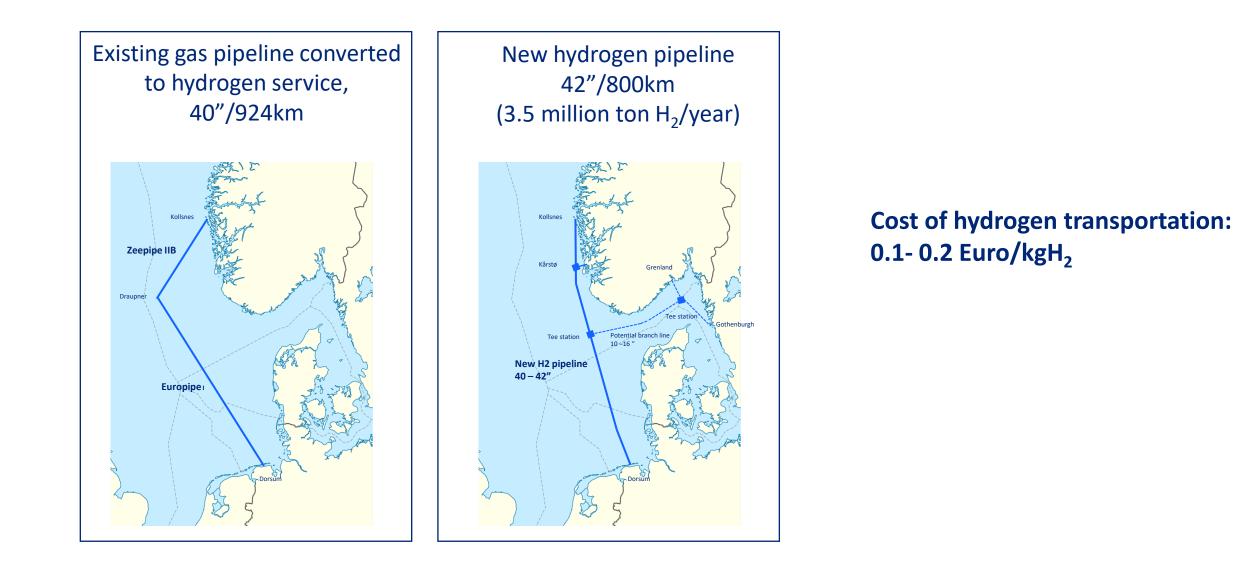
REINERTSEN New Energy Company Profile

Independent engineering / technology company


Developing clean energy technology and solutions for:

- ✓ Emission free production of hydrogen/ammonia from natural gas with CCS
- $\checkmark\,$ Pipelines for transportation Hydrogen, Natural gas and $\rm CO_2$, including:
 - ✓ Compression stations
 - ✓ H₂ blending / de-blending plants
- ✓ Hydrogen and ammonia for decarbonization in multiple sectors

REINERTSEN New Energy supplies engineering solutions to the hydrogen value chain. Serving as the independent engineer to global gas pioneers, we embark on a new and clean industrial adventure - for those that come after us and the world they will live in.

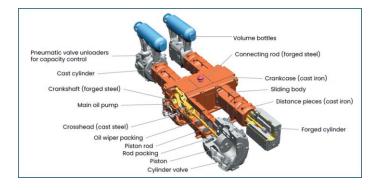

Emission-free production of hydrogen and ammonia - HyPro-Zero[™]

REINERTSEN NEW ENERGY

Clean Ammonia

Gas pipelines for efficient hydrogen transportation Example: Norway to Netherlands/Germany

Blue and green hydrogen

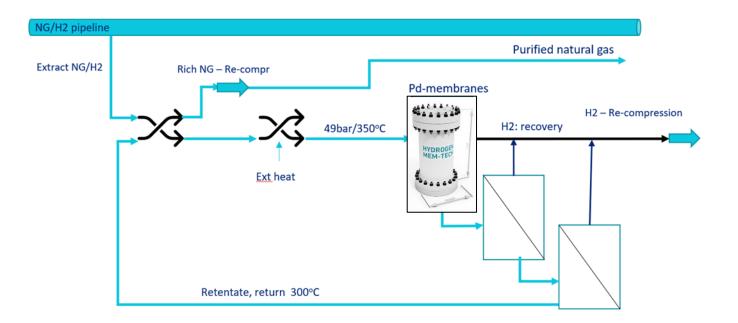

- The most important vector in decarbonisation is electrification renewable electricity should be used directly.
- Availability of valuable, renewable electricity will limit the volumes of green hydrogen.
- Natural gas will gradually be phased out. Therefore, natural gas will be an important source for large volumes of competitive, blue hydrogen.
- Until recently, blue hydrogen is very competitive (1.5 2.0 Euro/kgH2) less than half the production cost of green hydrogen.
- When comparing blue and green hydrogen production cost, its important to consider the long term production cost and market price, for natural gas and renewable electricity. The market prices for renewable, natural gas and hydrogen are interconnected more or less!
- Therefore, companies and nations that have access to natural gas and CO₂ storage facilities will be supplying a lot of hydrogen and ammonia to the market.

300 MW Compressor station for pipeline transportation of 3 million ton H2/year!

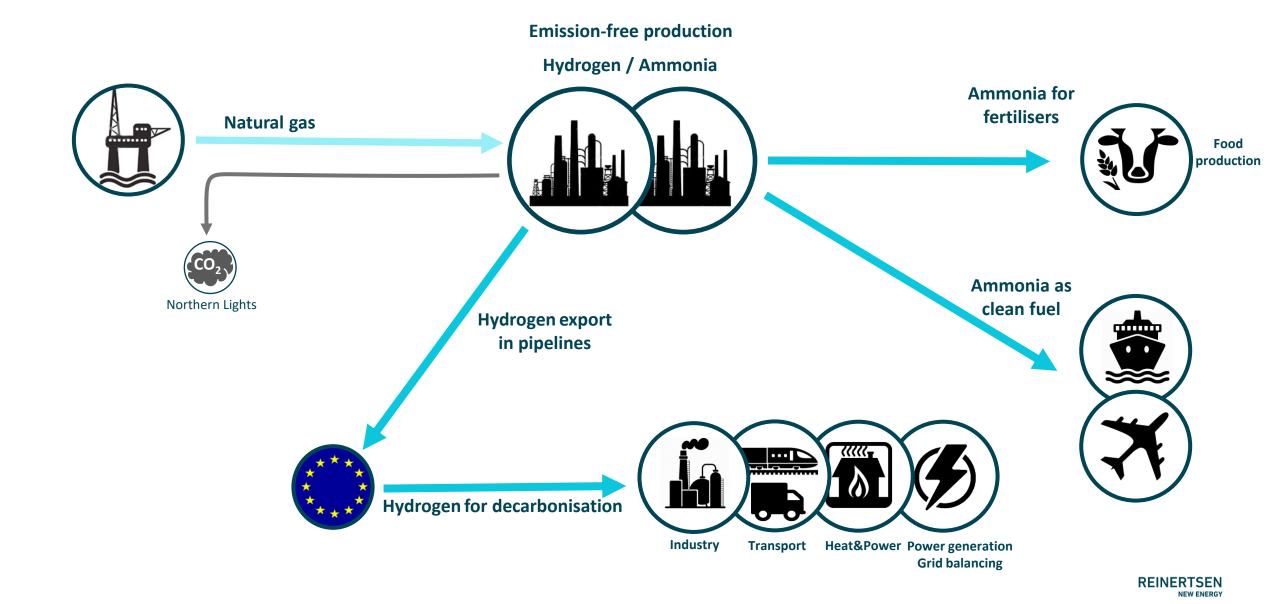
REINERTSEN New Energy awarded H_2 compressor study for \gg GASSCO

Example: Large reciprocal compressor station for Hydrogen

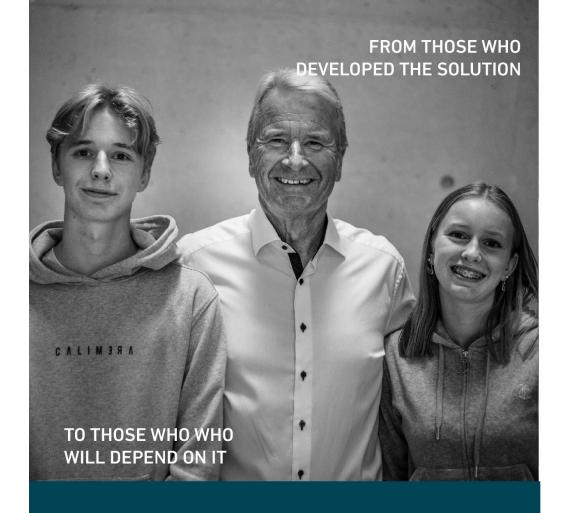
Centrifugal Compressor – Standard Barrel Type



Forged Steel Casing with inner casing


H₂ Blending and Extraction (Europipe 1)

Gas pipeline H₂ Extraction Station – concept study


Blue hydrogen and ammonia – efficient transportation and decarbonisation

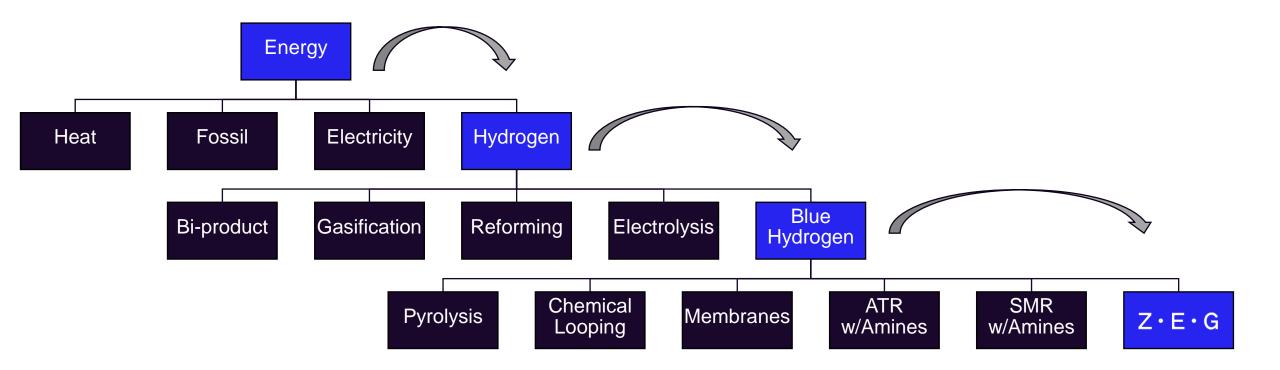
Thank you for your attention!

Please contact: Torkild R. Reinertsen, PhD Chairman & Market Lead Hydrogen REINERTSEN New Energy +4792228646 torkild.reinertsen@rein-energy.com

www.rein-energy.com www.hydrogen-mem-tech.com

Reinertsen New Energy has the technology to refine natural gas to hydrogen, without CO2 emissions. With more than 40 years of experience, we stand ready to start a new and clean industrial adventure here and now - for those that come after us and the world they will live in.

Clean Hydrogen from Norwegian natural gas in 2022


ZEG Power – CEO Arild Selvig

Norwep Hydrogen & CCS Webinar- Europe

Webinar 11-12.05.22

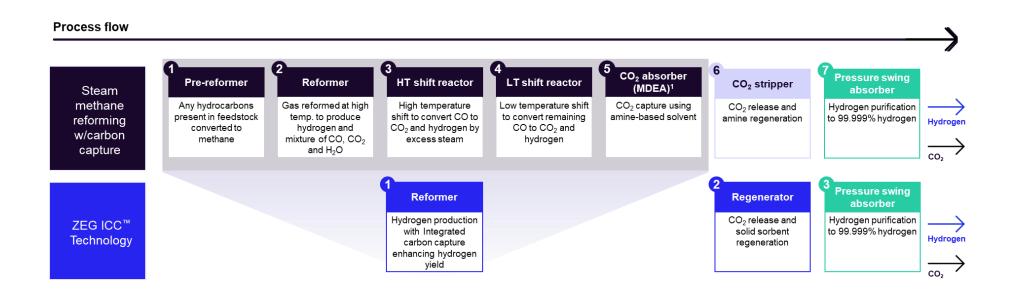
Zero Emission Gas


Blue hydrogen – Part of a complex energy transition landscape

(Illustrative examples, not exhaustive)

ZEG offers a competitive solution to clean** hydrogen

High yield hydrogen production with integrated CO₂ capture


ZEG Owners:

 ** Below 2022 EU taxonomy threshold of 3 Kg CO_2/Kg H_2

ZEG solution vs. conventional SMR w/CCS

Replace five SMR process steps with one

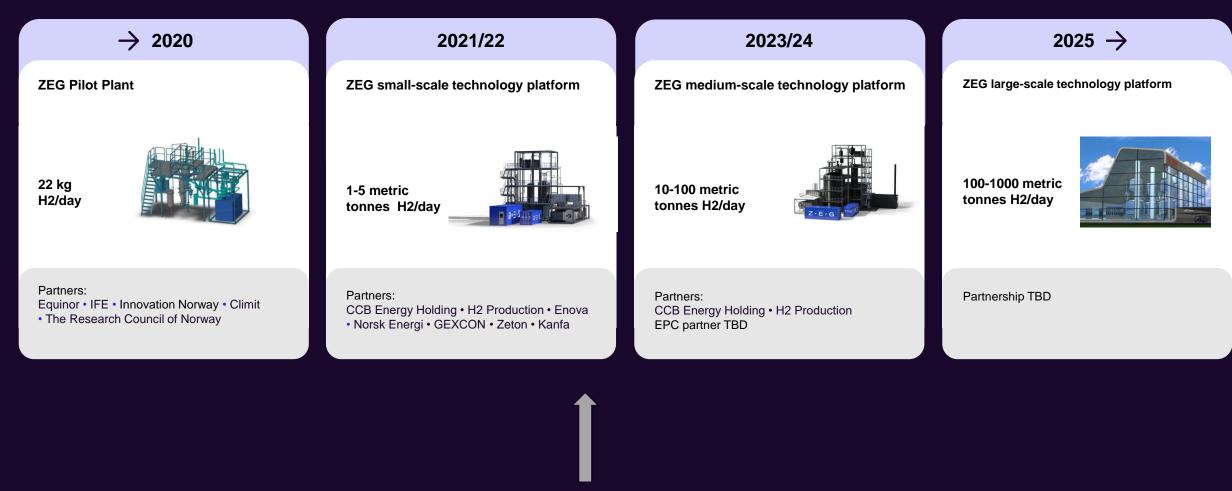
Competitiveness:

- High CO2 capture rate
- Increased hydrogen yield
- High thermal efficiency
- Low CAPEX, OPEX and footprint
- Non-toxid sorbent

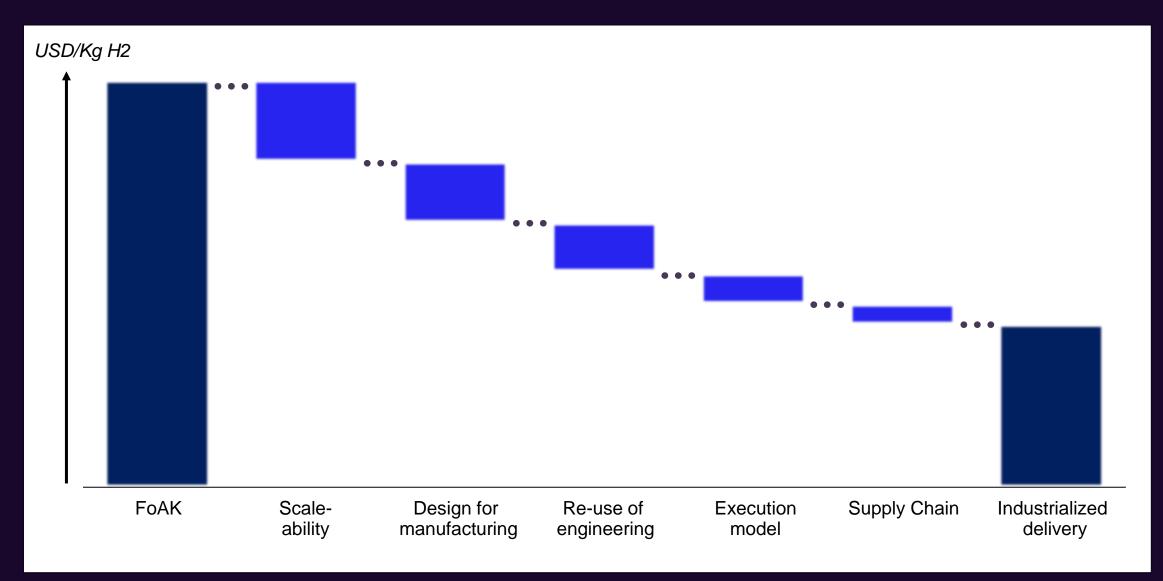
 $Z \cdot E \cdot G$

H1 Kollsnes – clean hydrogen production by end 2022 on the west-coast of Norway

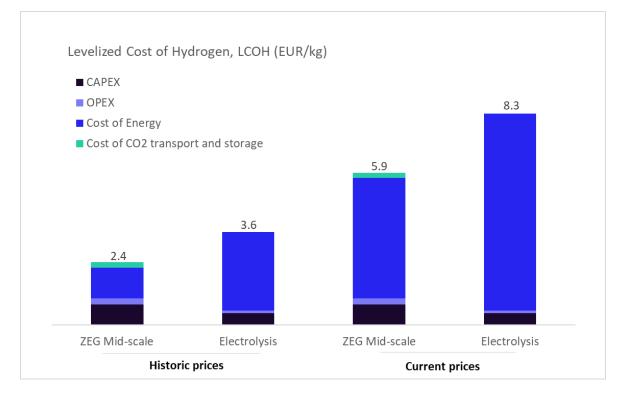
H1 Kollsnes project


Northern Lights CO₂-injection:

Manufactoring @ Zeton:

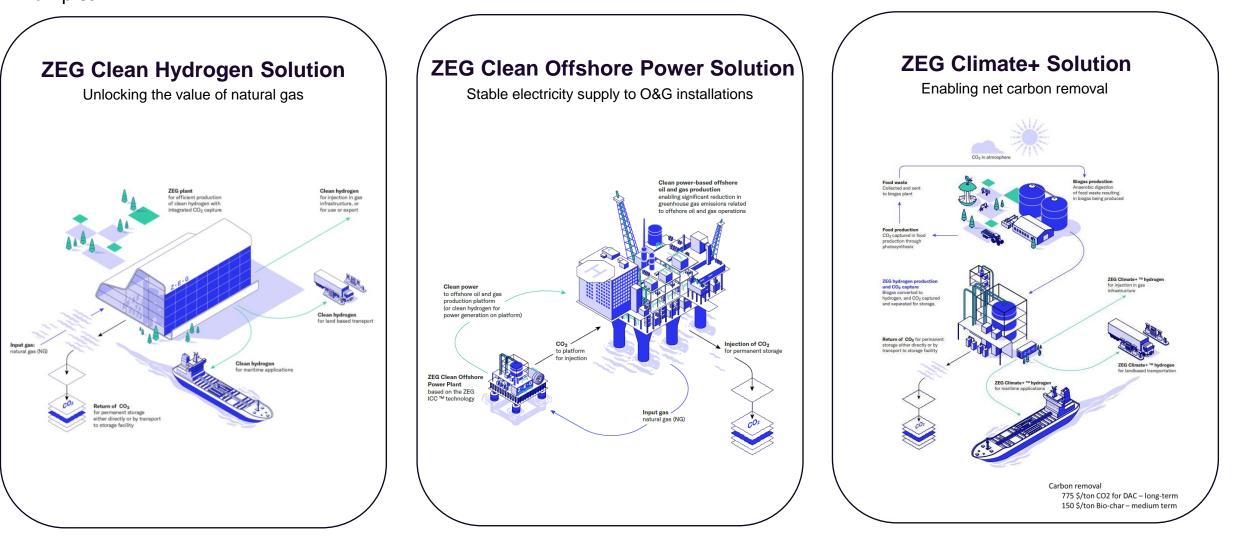


Roadmap to improved competitiveness - Scale



Today

Roadmap to improved competitiveness - Industrialization


Clean hydrogen LCoH versus volatility in energy prices

Source: DNV GL: ZEG Power H₂ technology comparison study and company estimates. Cost of carbon transport and storage 25 EUR/ton 2020 energy prices: Natural gas 12 EUR/MWh, Electricity: 60 EUR/MWh Late 2021 energy prices: Natural gas EUR 70/MWh, Electricity: 150 EUR/MWh

ZEG solutions can be used across industries

Examples:

Summary

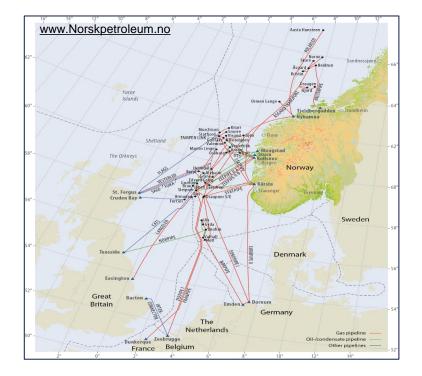
- The future European energy mix will consist of multiple renewable energy sources and carriers
 - Sufficient "room" for both green and blue hydrogen in the mix
 - Complete hydrogen value chain perspective needed to drive hydrogen supply & demand
 - CO₂ emission taxes key to drive the transition
- ZEG industrialize world-leading solutions for clean hydrogen production based on hydrocarbon gas
 - Technology and solutions developed over 20 years to commercialization now at Kollsnes, Norway
 - EU taxonomy-compliant
 - FoAK production start-up end 2022
- The ZEG solution has potential across industries:
 - Clean hydrogen production also at scale
 - Electrification of offshore production platforms
 - Carbon removal through ZEG Climate+

New life for pipeline infrastructure in the energy transition

Norwegian Energy Partners Hydrogen and CCUS Webinar - Europe

Bente Helen Leinum

12 May 2022


WHEN TRUST MATTERS



Introduction

- Pipelines will play a critical role in transporting CO₂ and H₂ in the years to come.
- There are extensive O&G pipeline networks in the North Sea and throughout Europe that may be reused to meet climate goals.
- Reuse of existing pipelines is indicated by various stakeholder to be 1-15% of the cost of a new construction. But are they suitable?
- Before we introduce O&G pipelines to H₂ or CO₂, we must better understand the challenges that these products brings along.

The challenges

- For large scale CO_2 or H $_2$ infrastructures, reliability and integrity is key.
- The risk picture has changed
 - Safety risk
 - Financial risk
 - Societal risk
 - Energy security risk
- How to take original design and operational considerations into account in this new risk picture
- Need for innovation and R&D for effective integrity management.
- Need for standards and industry guidelines.

Conversion from O&G – Some key considerations

	General	Dense Phase CO2	Hydrogen
•	Composition Materials compability Polymers Available documentation	 Minimum operating pressure Safety - Consequence zones, Capasity to withstand running fractures 	 Brittle fracture properties in steel Capasity to withstand running fracture Weld flaws acceptance criteria
• • •	Regulations Standards Transport directions Routing	 Mechnical properties - fracture thoughess Product weight - Frespan, Water Content Corrosivity Blowdown - Temperature, noise 	 Steel fatigue criteria Product weight - on-bottom stability Allowable operating pressure Energy transport capasity Safety - flammability, explosion pressure
		 Dry ice formation Gas Phase CO2 Maximum operating pressure Transport Capasity 	••••

How can we meet these challenges - The Value of Industry Standards & Guidelines

- Provides requirements, specifications, guidelines or characteristics that can be used consistently to ensure that materials, products, processes and services are fit for their purpose.
- Provides guidance for the safe management of pipeline infrastructure both for new design and re-use.
- Reflects industry experience and are often results of joint industry projects and R&D
- Establish trust and confidence between stakeholders, authorities and the socity.

Available standards and guidelines for CO₂ pipelines

DNV-RP-J201 Qualification procedures for carbon dioxide capture technology

DNV-RP-F104

Design and operation of carbon dioxide pipelines

DNV-RP-J203 Geological storage of carbon dioxide

INTERNATIONAL STANDARD

ISO 27919-1

Carbon dioxide capture – Performance evaluation methods for post-combustion CO₂ capture integrated with a power plant

ISO 27913

Carbon dioxide capture, transportation and geological storage – Pipeline transportation system

ISO 27914

Carbon dioxide capture, transportation and geological storage – Geological storage

Standards and guidelines for H₂ pipelines

SETTING THE STANDAR

H2Pipe JIP - Design and Operation of Hydrogen Pipelines

With the rapidly growing interest for hydrogen transportation in offshore pipelines, eith in new-built pipelines or in conversion of existing natural gas pipelines, aneed for guidance has been identified by several parties. As a response to this need DNV is running a JIP on offshore hydrogen pipelines considering both bended and pure hydrogen. The objective of the JIP is to develop a recommended practice as a supplement to the existing offshore speline standard. DNV-ST-F101, similarly to DNV-RF-F101 is for CO2 pipelines. The project will focus on dentifying gars between ASME E31.12 and the DNV offshore pipelines standard and develop guidance to fill these gaps.

Objective • Identify additional considerations that are needed for pipelines operated with hydro describe the principal rinks and hazards associated with hydrogen systems and to these additional considerations in an existing packeter. • Co-operation with other hydrogen Initiad research initiaties.

Discussion with JIP participants who will be part of the core team defining the requirements acceptance criteria for offshore hydrogen pipelines. Provide a better understanding on how pipeline systems can be designed for safe hydrogen

Hydrogen Piping

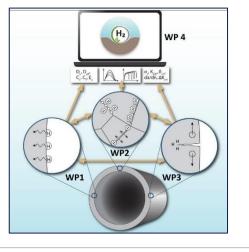
and Pipelines

AN AMERICAN NATIONAL STANDARD

ASME Code for Pressure Piping, B31

ASME B31.12-2019

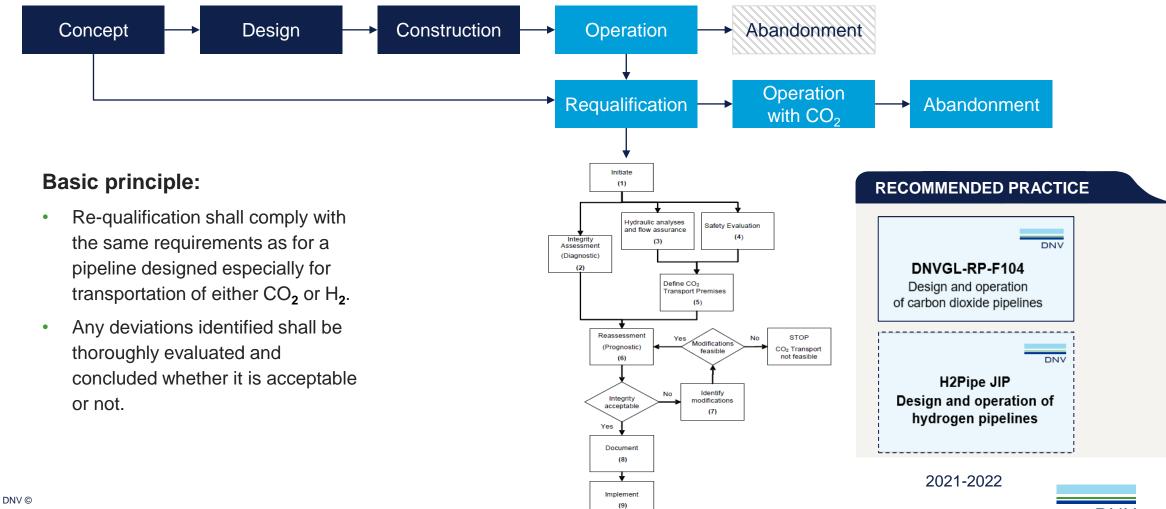
(Revision of ASME B31.12-2014)



DNV-RP-Fxxx Design and operation of hydrogen pipelines

Example ongoing research project: HyLINE - Safe Pipelines for Hydrogen Transport managed by SINTEF.

Industry partners: Equinor, Gassco, TechnipFMC, AirLiquide, NEL, TenarisDalmine, Total E&P


Research partners: SINTEF, NTNU and Kyushu University

https://www.sintef.no/en/projects/2019/hyline-safe-pipelines-for-hydrogen-transport/

DNV Work Process: Re-qualification of pipelines for CO_2 or H_2 service

8

Re-stream – Study on the reuse of oil and gas infrastructure for hydrogen and CCS in Europe

- Assess the potential of existing European oil and gas infrastructure (in EU 27, UK) and Norway) to transport H2 and/or CO2.
- Provide fact-based information to European policymakers and stakeholders in order to inform forthcoming debates on EU energy transition and climate policies.
- The study includes high level technical assessment of the infrastructure, identification of CO2 emitters and potential H2 users and producers that could benefit from the reuse of the infrastructure; and economic assessments of reuse compared to new build on specific cases.

NOTE: An initial technical screening was undertaken considering the data provided by the pipeline operators. This analysis does not replace a full pipeline re-qualification process that would require way more inputs for each pipeline

> Underground Gas Storage

Contractors:

CARBON LIMITS

Stakeholders:

32,000 km - 335 pipelines-

73 operators - 30 IOGP members

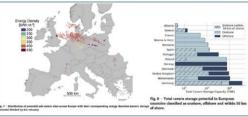
DNV.GL

~225.000 km

44 TSO members, 3 Associated

Partners and 9 Observers

Concawe


LNG plants

~34,000 km - 409 pipeline sections - 46 operators

https://www.carbonlimits.no/project/re-stream-reuse-of-oil-and-gas-infrastructure-to-transport-hydrogen-and-co2-in-europe/

DNV ©

H2Pipe JIP - Design and Operation of Hydrogen Pipelines

Objective

With the rapidly growing interest for hydrogen transportation in offshore pipelines, either in new- built pipelines or in conversion of existing natural gas pipelines, a need for guidance has been identified by several parties. There is today no offshore pipeline code covering hydrogen transport. As a response to this, DNV is running a JIP on offshore hydrogen pipelines considering both blended and pure hydrogen. The objective of the JIP is to develop a recommended practice as a supplement to the existing offshore pipeline standard, DNV-ST-F101.

Benefits

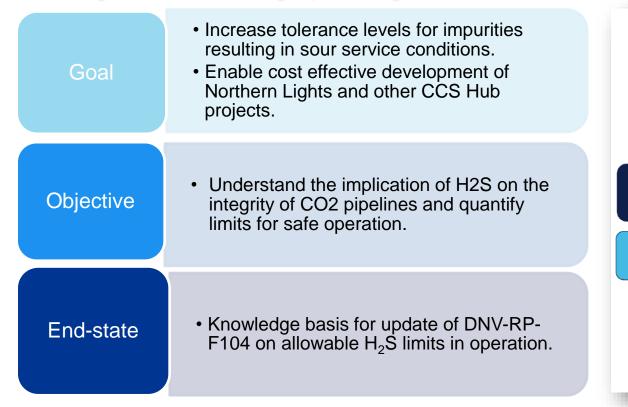
- Provide a better understanding on how a pipeline system can be designed for safe hydrogen gas transportation, and if necessary, which mitigation measures that should be put in place.
- Enhance the general understanding on how hydrogen gas affects the material properties (both as 100% H2 and a blend with natural gas) and further the real design limitations.
- Ensure less conservative design and material requirements.
- Ensure better utilization of the pipeline system when transporting hydrogen.

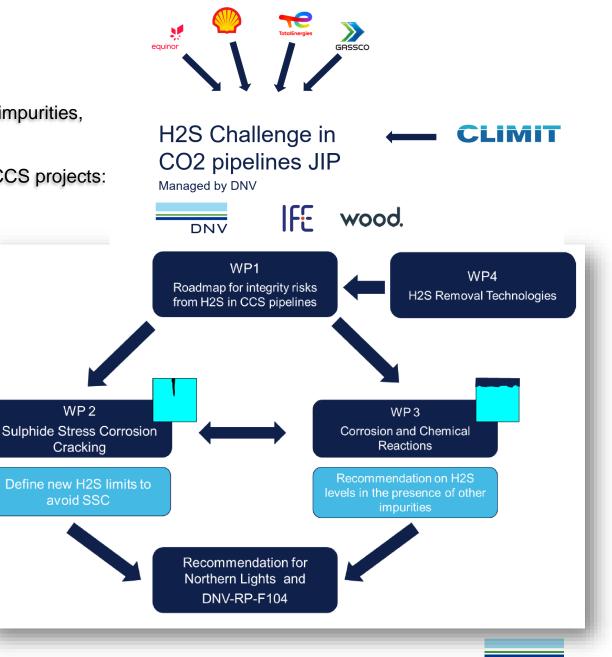
Project details

Customer 28 major companies, including Energy companies, Suppliers, Contractors and steel manufactures.

Period: 2021 - 2022

H2Pipe JIP Members




CO₂ Safe & Sour JIP

The Northern Lights pipeline is being developed with tight tolerances for impurities, including H2S.

Increased tolerance levels for impurities can give considerable value to CCS projects:

- Makes CCS more accessible for different sources/customers
- Limiting customers need for gas processing

CO2SafeArrest – Fracture propagation testing

Two full scale fracture arrest tests for validation of the numerical models at DNV's Spadeadam full scale test site during 2017/2018.

Full-scale fracture propagation testing to understand ductile fracture propagation/arrest behaviour of pipelines.

Improving safety and efficiency of CO_2 pipelines by developing and validating predictive models for CO_2 pipeline design.

SOLUTION

DNV's validation of fracture arrest models and design requirements will:

- Eliminate project-specific full scale fracture arrest tests
- Remove excessive conservatism (sufficient wall thickness and material properties identified)
- Reduce costs for new CO₂ pipeline projects
- Input to definition of safety class and selection of pipeline safety factors.

PROJECT DETAILS

Customer Gassnova + Energy Pipelines CRC

Location UK + Norway

Date 2017-2020

Full scale testing of Submerged CO₂ pipelines

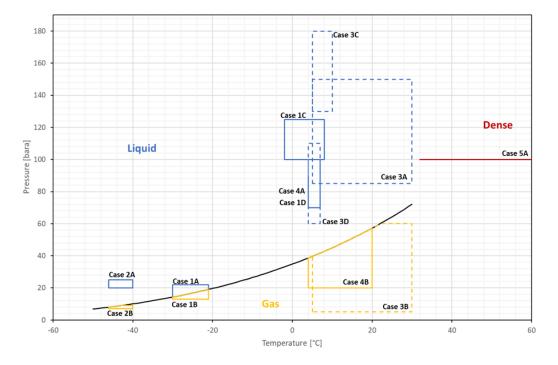
DNV supports **Wintershall DEA** and the **OTH Regensburg University of Applied Sciences** to explore how existing natural gas pipelines in the southern North Sea can be used for future CO_2 transport.

A key activity is performing large-scale CO₂ pipeline testing of running fracture in air and in submerged (water) condition at DNV's Testing and Research Facility at Spadeadam in the UK

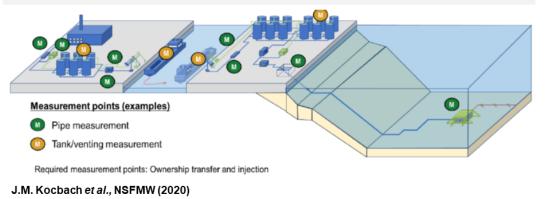
SOLUTION

Quantify the effect of the water surrounding the pipeline on the crack arrest behavior for a specific pipeline, and thus better define the model parameters used for different backfill types.

https://www.dnv.com/news/dnv-supports-world-first-large-scale-testing-of-submerged-co2-pipelines



$\rm CO_2$ flow metering JIP


Wide range and scale of flow regimes:

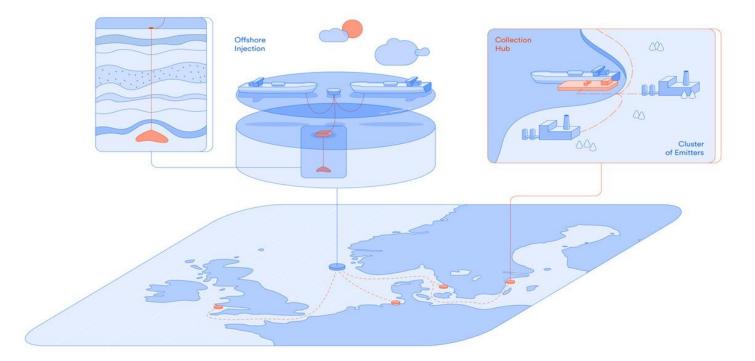
- Ship (off)loading liquid and vapor (case 1A/B, 2A/B)
- Pipeline and wellhead injection (case 1C/D, 3C/D)
- Offshore pipelines liquid and vapor (case 4A/B)
- Onshore pipelines vapor and supercritical (case 3A/B, 5A)

- Metrological requirements for CO₂ metering in gas, liquid and dense phase set by EU ETS commission regulation 2018/2066:
 - Maximum permissible uncertainty: 2.5% on mass
 - Traceability through international standards and ISO17025 accredited labs
- Limited (or lack) of facilities available for CO2 flow testing & calibration

Thank you for your kind attention

See also DNV Energy Transition Outlook 2021

https://eto.dnv.com/2021


Bente Helen Leinum +47 41907649 bente.leinum@dnv.com

www.dnv.com

16 DNV ©

Altera and Höegh LNG scaling up CCS

Tore Lunde tore.lunde@hoeghIng.com +47019557 Höegh LNG

12 May 2022

Höegh LNG and Altera at a glance

Altera 29 Shuttle Tankers
9
8
5
5
10 Towing Vessels

- Industry leader and pioneer in harsh weather FPSOs
- Industry leader and market segment developer of Dynamically Positioned Shuttle Tankers
- 30+ years of experience

Höegh LNG

Partners

- Industry leader in the FSRU market
- 45+ years of gas handling experience
- Developed floating LNG import terminals worldwide
- Part owner & ship management of small LNG carrier fleet

Our collective competence and experience in these three industry segments makes us unique and puts us in a stellar position to lead our industry to a sustainable CCS future.

Offshore CO2 transport, injection and storage – FPSO, shuttle and FSRU business "in reverse"

Experience & reference

Collection, Processing and Export

Transport and DP offloading

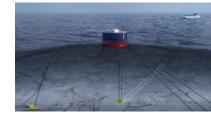
Offshore Injection and storage

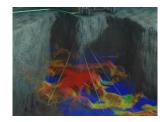
O&G related competence used to realize CCS

The Stella Maris CCS Project

The Stella Maris CCS Project

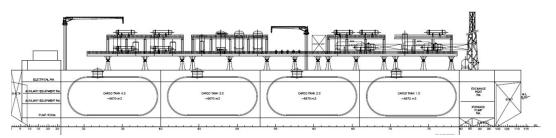
Infrastructure


To get CCS costs down, large scale flexible solutions are required!



Infrastructure planned can handle ≥ 10 mtpa of CO2

Capturing Technology	Transport CO2 from Emitter to	Collection & export	Transportation	Injection of CO2	Offshore Storage Reservoir
Emitter specific but Stella Maris CCS can offer this in cooperation with capture technology company	CCSO In cooperation with emitter (pipeline, truck, rail, barge, etc)	CO2 Collection, Storage and Offloading (CCSO) 2 units (50-80 cbm)	CO2-shuttle carriers 4 units (50k cbm low pressure)	Floating Injection Unit 1 unmanned unit connected to 2 STL systems	

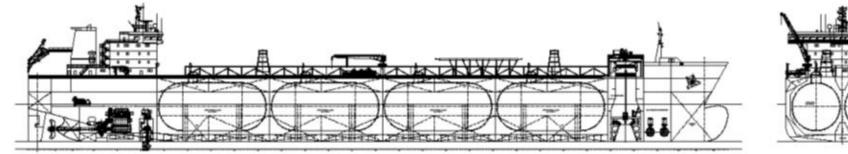

- Zero emission capable
- Scalable Worldwide design one build many
- Solution to be deployed for large scale emitters and clusters in 2026
- One stop-shop from collection to storage
- Cooperate close with industry and policy makers nationally and internationally

Collection, Processing and Export

Carbon Collection, Storage and Offloading Unit (CCSO)

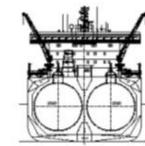
Typical CCSO Moored at jetty/ quay or in protected area 50-80k cbm storage (size adaptable to need/site) Annual capacity up to 7 mt/unit Designed for shore power

Designed to receive and process:


- High- & low-pressure gas from pipelines
- Medium & low-pressure liquid from trucks, rail, ships, barge
- \gtrsim Various qualities with different levels of impurity

Principal Dimensions (80k cbm design):

Length o.a.	220m
Breath (M)	58m
Depth (M)	24,5m
Design Draft	13m

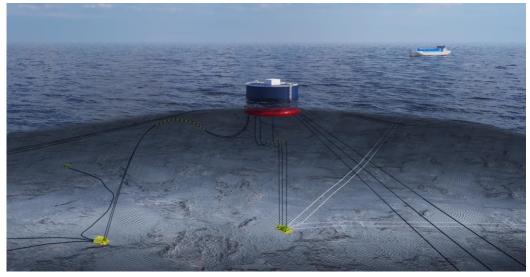

CO2 Shuttle Carriers

- New, state of the art CO2 shuttle carrier design
- 50,000 cbm low pressure tanks •
- CO2 stored and transported as liquid at 6,5 barg & -47°C ٠
- Zero emission capable ٠
- **Electric Power distribution** ٠
- Battery hybrid installation ۲
- LNG/Bio gas/NH3 as fuel •

Optional:

- Size to meet needs
- Direct injection capability ٠

Principal dimensions:


Length o.a:	238m		
Breadth (M):	38m		
Depth (M):	22m		
Design draft:	13m		
Cargo cap:	50k cbm		

Key Innovations

- Low pressure CO2 tanks
- Dynamically positioned CO2 carrier
- Equipment for offshore unloading of CO2
- Power Source for injection unit

Floating Injection Unit (FIU)

- Allows continuous injection
- Heating and injection modules below deck
- Power from Shuttle carrier (+ battery back-up)
- Unmanned and operations from shore, communication via shuttle carrier
- CO2 heated and injected into reservoir in dense phase (>5°C & 65 -160 barg)

Main Deck diameter Hull Depth:

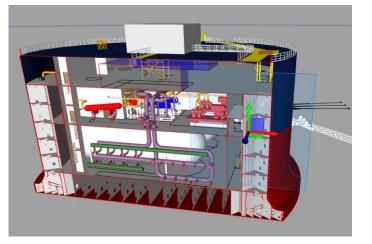
Bilge Box diameter:

Hull Diameter

Design draft: Draft loaded

Principal dimensions:

50m


62m

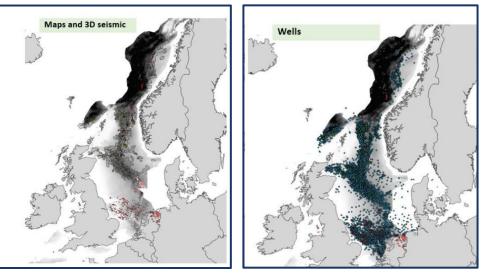
50m

22m

13m

14m

Alternatives:

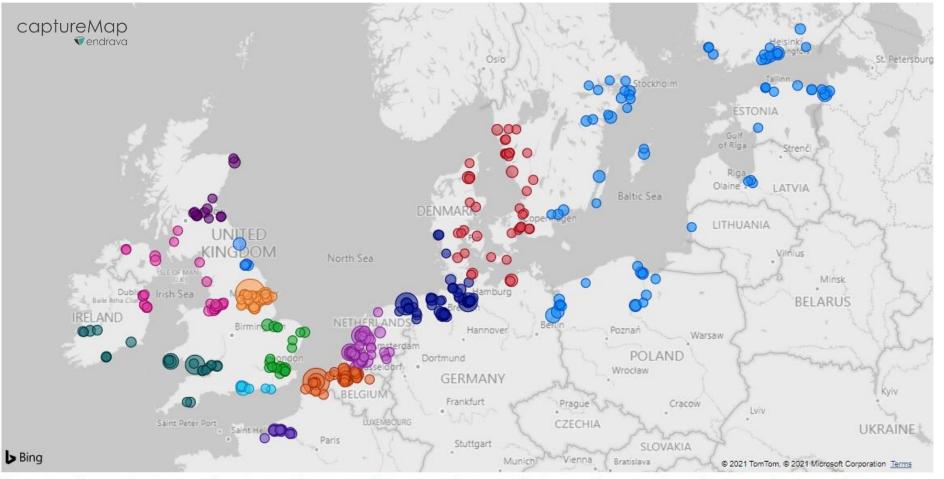

- Injection facilities on an existing offshore installation or on new fixed offshore structure
- Direct injection from shuttle carrier

Key Innovations

- Power from CO2 Shuttle Carrier
- Normally Unmanned
- Equipment for offshore loading of CO2
- Zero emission capable

Potential CO₂ injection and storage reservoirs

Data coverage (wells, 3D seismics and maps)

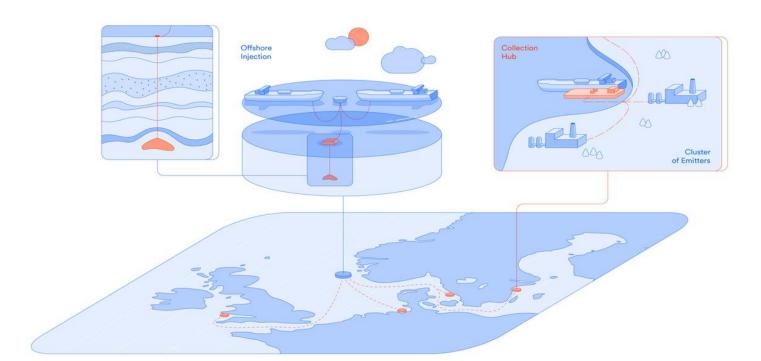

- Screening of potential reservoirs on the Norwegian Continental shelf (NCS) to identify;
 - Geologically stable areas with strong confining seals, adequate size, permeability, porosity and depth so that the pressure and the temperature in the reservoir are high enough to permanently maintain the injected CO2 at supercritical condition
 - ✓ Saline reservoirs without HC
- A work program carried out in 2021/22 to identify suitable reservoirs and develop geological models
- To get a license on NCS, it is important that interested companies form part of a value chain based business case
- Entered into cooperation with recognized E&P company to be part of Stella Maris CCS and to be subsurface operator

Marketing focus

Building business cases

- 13 hub areas
- Variances in magnitude and type of industry
- Focus on largest contributions in each cluster first, and company emitters

🔮 Amsterdam, ... 🔮 Baltic Sea 🜑 Delfizijl - east-... 🔮 Dunkirk, Ghent, ... 🌢 Edinburgh, D... 🜒 Irish sea + Isle ... 🌑 Le Havre ++ 🏶 Rostock-Katt... 👁 S. Ireland S... 👁 SE UK 🜑 Southampton 🜑 Teeside-Ashi... 🥮 Yorkshire an...

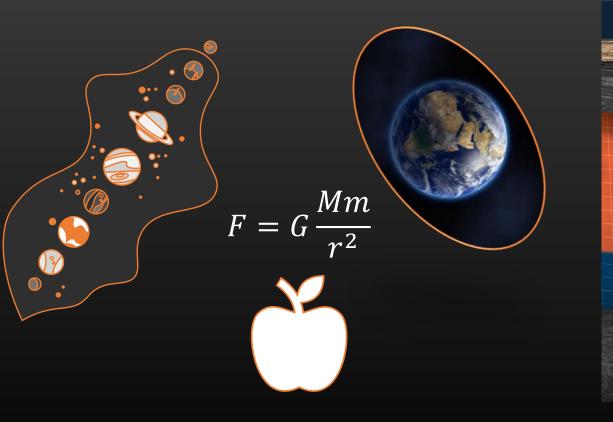


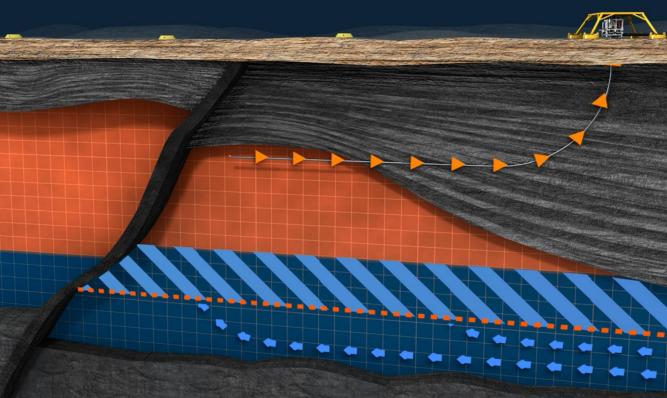
Stella Maris CCS

Large Scale, Flexible, Scalable Maritime CO₂ Logistics Solution

During the next 12 months we will;

- finalize technical concept and secure subsurface storage license
- finalize joint development agreements and establish joint project team to deliver Stella Maris CCS
- continue marketing our solution to individual companies, industry clusters and national authorities
- become a one-shop-stop provider of a competitive and cost-efficient CO₂ solution from collection to storage





A cost-effective holistic approach to monitoring of CO₂ storage

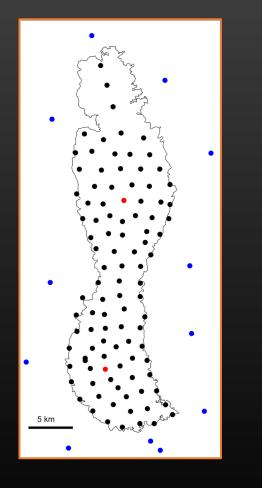
gWatch Technology in a nutshell

2

gWatch Technology in a nutshell

Sensor frame with three **relative gravimeters** and three **pressure sensors**

Merlin Ur



OCTIC

GRA

gWatch Technology in a nutshell

Sensor frame with three relative gravimeters and three pressure sensors

gWatch

Two independent measurements

Gravity : Sensitive to mass changes

- Monitor fluid movements
- Maps hydrocarbon depletion
- Distinguishes drive mechanism

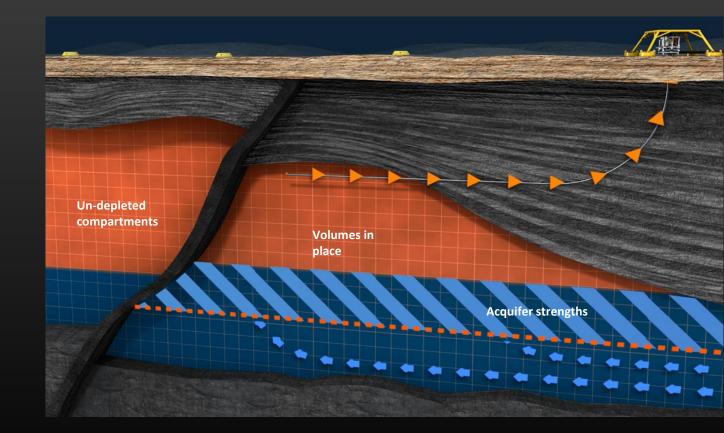
Seafloor deformation: Sensitive to reservoir compaction and expansion

- Pressure drop
- Pore compressibility

Ruiz, H., et al., 2016, Monitoring offshore reservoirs using 4D gravity and subsidence with improved tide corrections, SEG Annual Meeting, October 2016, Dallas, SEG-2016-13576781

Value proposition for hydrocarbon production

Efficient reservoir management


- Understanding of reserve depletion
- Target untapped reserves

Field development strategy

- Incremental hydrocarbon recovery
- Efficient top-side infrastructure

Cost effective

- 1/10 conventional 4D seismic
- Simplified operations and logistics

Value proposition for CO₂ storage

Efficient reservoir management

- Constrain uncertainties in the volumetric expansion of the injection plume
- Reduce uncertainties in in-situ CO₂ density
- Pressure communication in the reservoir
- Detect vertical leakage of the CO₂ plume

Field development strategy

- Optimize injection rates
- Confirm long term containment and storage capacity

Cost-effective

- 1/10 conventional 4D seismic
- Simplified operations and logistics

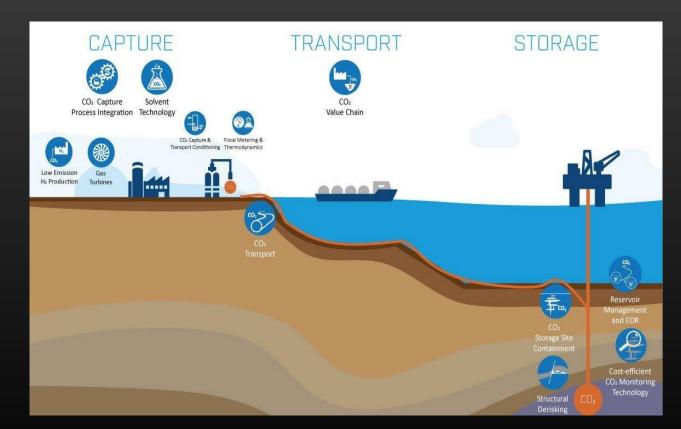



Illustration from Norwegian CCS Research centre

Technology track record

Field	Since	No. surveys	Burial depth (m)	Concrete platforms	Main applications (Main contribution from: gravity, subsidence)
Troll	1998	8	1400	11⊀	Compressibility Aquifer support, prediction of water break-through
Sleipner	2002	4	800/2350	50	Properties of injected CO ₂
Mikkel*	2006	4	2500	21	Aquifer strength, volume of gas in place
Midgard	2006	5	2500	60	Identified undrained compartment: successful infill well Aquifer strength, prediction of water breakthrough
Snøhvit / Albatross	2007	3	2500	86	GIIP, prediction of water break-through
Ormen Lange	2007	7	2000	120	Aquifer influx, compartmentalization Reservoir compaction, pressure depletion
Statfjord (oil)	2012	2	2750	l 5≺	Subsidence, aquifer properties, reservoir compressibility Improved geomechanical for better 4D seismic
Aasta Hansteen*	2018	2	2300	31	Aquifer influx, optimize production
3 oil fields in the GoM	2018	1	2500	-	Node DepthWatch
Oil field in the GoM	2018	2	800 - 2000	11 frames	DepthWatch at a water depth of 2800 m Client been trying alternative technologies
Oil field in the GoM	2021	1	1700 - 2900	-	Node DepthWatch

Conclusions and outlook

Field-wide mapping for efficient reservoir management of:

- Constrain uncertainties in the volumetric expansion of the injection plume
- Reduce uncertainties in in-situ CO₂ density
- Pressure communication in the reservoir
- Detect vertical leakage of the CO₂ plume

Field development strategy

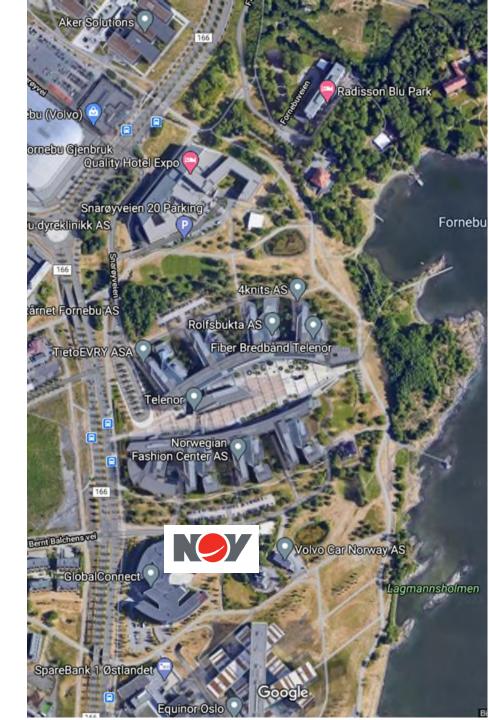
- Optimize injection rates
- Confirm long term containment and storage capacity

Thank you

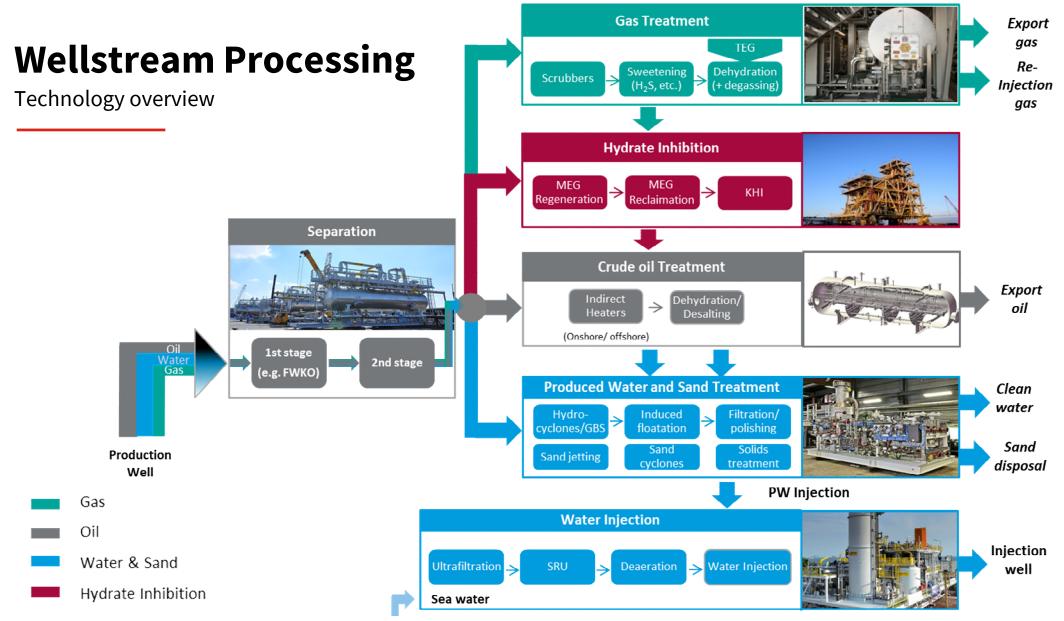
остю

NOV's Unique Products and Capabilities within Carbon Capture, Conditioning and Transport Value Chain

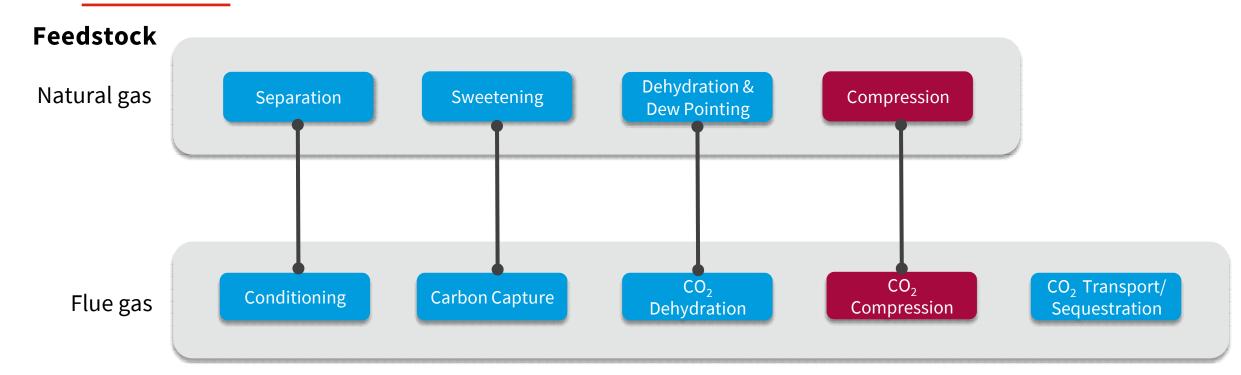
NORWEP H2 & CCS Webinar - Europe


12th May 2022

Company Structure


Wellstream Processing

Technologies


Wellstream Processing

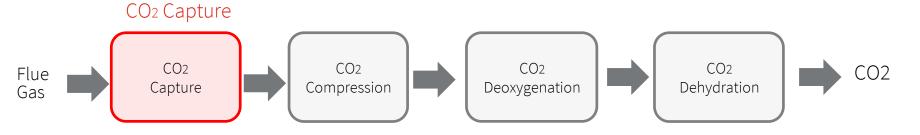
Carbon Capture, Conditioning & Transport Technologies Portfolio

NOV Carbon Capture Utilization and Storage (CCUS) Offering

Transferability of our natural gas processing technical and execution know-how to CCUS

NOV has critical technology / equipment portfolio and relevant know-how in-house

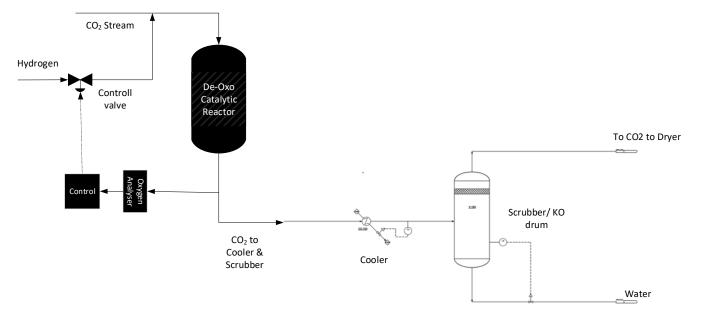
NOV has part of the offering in-house and is establishing partnerships to offer the complete solution

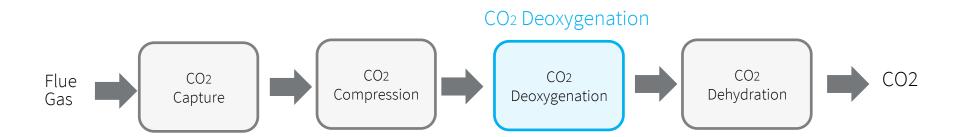

Carbon Capture & Conditioning

Carbon Capture

Experienced gas processing systems provider

- Extensive technology portfolio for postcombustion carbon capture from various emission sources.
- Strategic collaboration with critical technology suppliers for:
 - Chemical solvents
 - Novel technologies
- Cost-efficient designs and effective execution models from process systems deliveries to the upstream oil and gas industry.

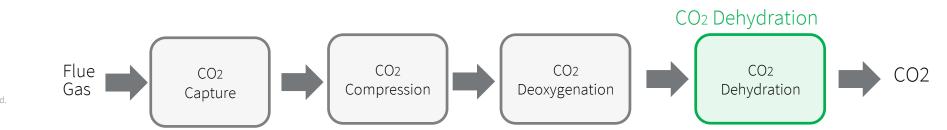




CO₂ Deoxygenation

Removes O₂ from CO₂

- O₂ reacted with H₂ over platinum/Palladium catalyst
- Water is produced as a product
- Placed upstream of the dryer unit



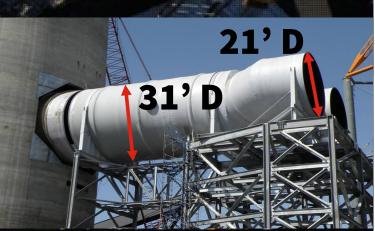
CO₂ Dehydration

Extensive technology portfolio

- Flexible & robust dehydration portfolio
 - TEG, molecular sieves, and silica gel
 - Industry-leading references for TEG dehydration systems
- 100 + projects executed standardized design and cost-efficient execution model
- Optimized designs resulting in systems with lower CAPEX and OPEX costs.

© 2022 NOV Inc. All rights reserved

Flue gas & CO₂ Transport


Flue Gas Composite Ducting

Year since our first power plant installation 577

Maximum operating temperature for our ductwork, in degrees C 40

Our largest diameter duct (in feet) ever wound in the field

Composite Solutions

Onshore CO₂ transportation

Advantages for CO₂ transport

- Excellent corrosion resistance—handles up • to 100% concentrations of CO₂
- Require less energy to produce than carbon steel •
- Superior smoothness compared to steel results • in meaningful lower energy requirements
- GRE pipe has 50 years of proven use in CO_2 applications

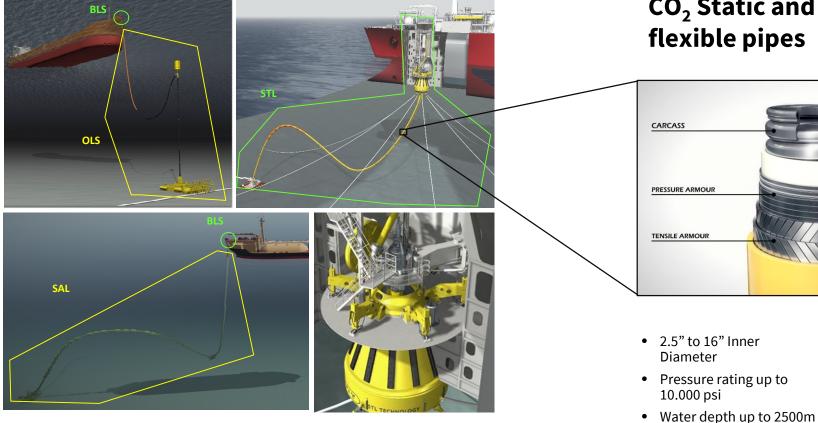
Why can you trust us?

- Installation of millions of feet of composite pipe • for CO₂ handling across the United States
- Largest global provider of GRE pipe in the world

or CO. service since 1980'

ears of proven use in CO, applications

100%


Our GRE pipe can handle up to 100% Wet CO₂

NOV Offerings for CO₂ Offshore Offloading Systems

CO₂ Offshore Offloading Systems

Submerged Turret Loading (STL)

Offshore Loading System (OLS)

Single Anchor Loading (SAL)

Blow Loading System (BLS)

CO₂ Static and dynamic High Pressure flexible pipes

• Hydrogen compatible

INNER LINER

OUTER SHEATH

- Dynamic risers and, jumpers
- Static flowlines and jumpers

14

Norwep – Hydrogen & CCS Webinar - Europe

Unique downhole technologies and workflow assures integrity in permanent CO2 storage

Agenda:

- Introduction
- Archer Well Integrity Workflow
- Stronghold[®] Defender & Barricade
- CFLEX Multistage Cementing tool
- Summary

Archer

CCUS (Carbon Capture Utilisation & Storage)

Introduction

1. Repurposing depleted offshore fields (platform wells) or development of new offshore saline reservoirs (subsea wells).

 Hostile environment very cold temperatures due to JT effects combined with acidic environment (wet CO2) attacking steel & Portland cement.

All wells penetrating the cap rock must be adequately completed or abandoned Elastomers should be suitable for CO₂ Cap rock requires adequate fracture gradient for any overpressures ANA MAN NAN **MAN** CO₂ injection absorbs into oil and CO₂ injection can exacerbate reduces viscosity, making it asphaltene deposition suitable for many enhanced oil problems

recovery projects

Supercritical CO₂ is relatively dense
 and aids in injection (reduced surface pressure)

Wet CO₂ is highly corrosive to carbon steels

A microannulus and a short cement column may allow long term leakage

The metallurgy of the casing/liner adjacent to the cap rock requires CO₂ resistant metallurgy such as duplex

> Dissolved CO₂ slowly attacks and weakens conventional (Portland) cements

CO₂ initially rises due to buoyancy until trapped by the cap rock. Long term, the CO₂ dissolves in water and slowly sinks

Shell fragments, calcite cements and other acid soluble minerals can dissolve, but possibly precipitate later

ARCHER WELL INTEGRITY WORKFLOW

WELL DESIGN, MONITORING, REPAIRING AND ABANDOMENT

1. Designing wells for CO2 injection

- Different challenges for injectors & monitoring wells (V0 "gas tight")
- Assessment of abandoned wells & existing wells (Slot Recovery, X-it[®])
- Cement placement (CFLEX[®] & MCAP[®])
- Harnessing creeping formations (Stronghold[®] Defender and Barricade)

2. Well monitoring: Testing & logging

- Assessment of annular barriers cement bonding, defects & creeping formations (Radial Bond Log, SPACE[®] Ultrasonics)
- Detecting CO2 leaks (VIVID[®])
- Corrosion logging (MIT Caliper, SPACE[®] Vernier)

3. Repairing annular isolation

- Cement squeeze
- PWC system (Stronghold[®] Barricade)
- Resins

4. Regulations & standards

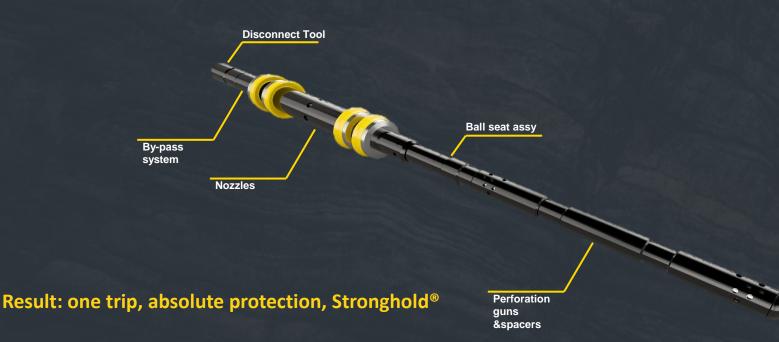
- ISO 27914: Geological storage of CO2
- OEUK Well Decommissioning guidelines for reuse of reservoir for CCUS – Q3 2022

Λ

STRONDHOLD[®] DEFENDER and BARRICADE

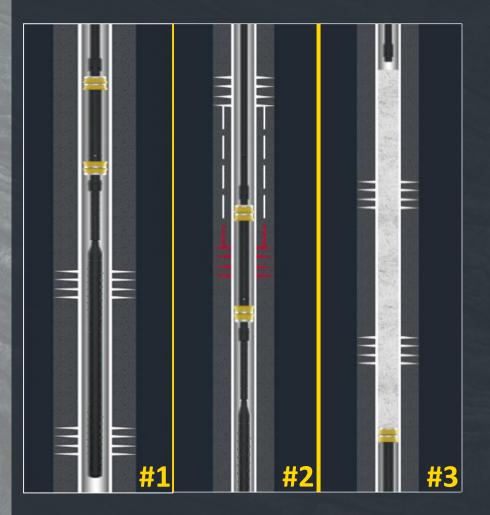
Permanent Caprock Integrity

STRONGHOLD[®] SYSTEM


Introduction

A permanent "rock-to-rock" barrier achieved in a single trip: STRONGHOLD[®] DEFENDER

- Perforate the casing
- Test the Integrity of the Annulus
- Cement across the perforated area


STRONGHOLD[®] BARRICADE

- Perforate the casing
- Wash cement, barite or shales in the annulus
- Cement across the perforated area

STRONGHOLD[®] DEFENDER SYSTEM

Operational Sequence

Step #1

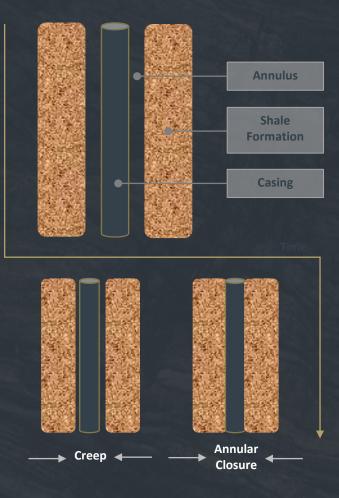
- RIH with the Defender[®] System to the desired depth
- Perforate the top and bottom of the planned interval

Step #2

 Position the Cups across the deep perforations and pressure test for communication

Step #3 If positive test:

- Disconnect the Defender[®] system below perforations as base for the cement
- Pump cement across the perforated and tested area (for reservoir abandonment)


If negative test:

 Perform Barricade[®] (Perf, Wash and Cement) operation to establish new rock-to-rock barrier in the annulus and drill out cement inside casing.

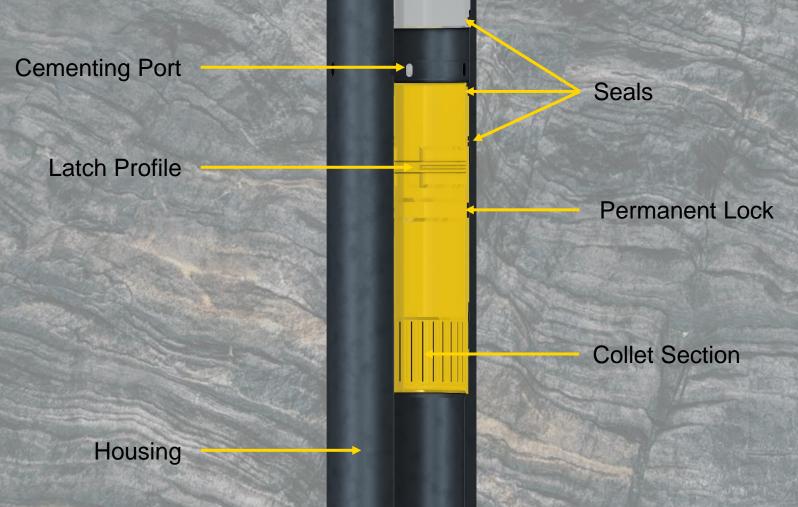
STRONGHOLD[®] DEFENDER[®] SYSTEM

Natural Shale Barriers reducing the need for Cement

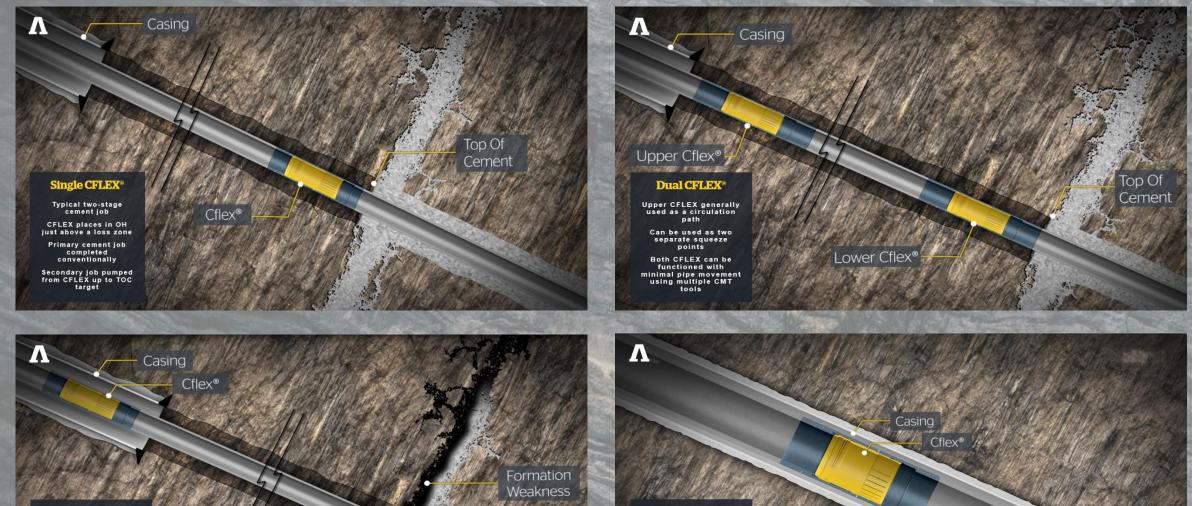
- The creeping shale needs to be qualified and tested as per local industry regulation to act as a barrier. Archer is providing the Stronghold[®] Defender[®] as an efficient one-trip formation integrity test system to qualify this.
- One example for using this method is the SPE-200755-MS "Innovative One Trip System Helps Qualifying Creeping Shale as Permanent Barrier for Plug and Abandonment of Wells on the Gyda Field in the North sea"

CFLEX®

/ \ \


Multi-Stage Cementing system

Λ


End Coupling

Principal Schematic CFLEX®

- CFLEX accept most premium threads
- Large TFA through cementing ports
- Multiple seal options
- 80 / 20 latch profile with emergency release
- Two stage hydraulic permanent lock
- Collet section controls opening / closing forces

Applications

APB Port

CFLEX utilized as pressure relief in subsea wells

Installed and kept closed throughout drilling process

CFLEX opened and left opened just prior to installing production tie-back

Top Down

Typical squeeze application

CFLEX placed at or above planned TOC

Cement squeezed down to loss zone

Consider a "hesitation" type squeeze for wells with severe losses

Λ

SUMMARY

Unique downhole technologies assures well integrity in CO2 wells Creeping shales need qualification as barriers in the caprock Certified "gas tight" under ISO 14310 V0 are a must in CO2 wells

One Archer. One Team.

For more information, Check our website: <u>www.archerwell.com</u> Or contact: <u>Mark.Urguhart@archerwell.com</u> <u>Fernando.Bermudez@archerwell.com</u>

On-site Demonstration of CO₂ Capture from the Hydrogen Processing Unit Results and Feasibility Study

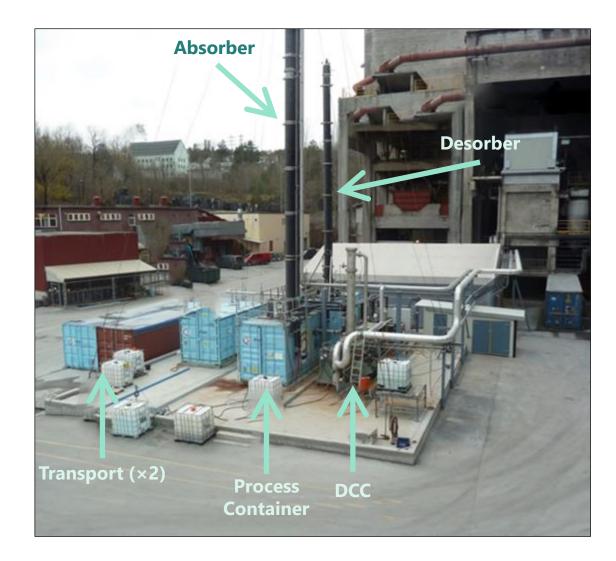
12/05/2022 Rayane Hoballah

The Mobile Test Unit Solvent Campaigns at the Preemraff Lysekil Refinery

The Mobile Test Unit (MTU)

50000 hours in operation

Key Data


- Up to 1200 Sm³/h flue gas
- CO₂ inlet concentration: 3 25 %
- CO₂ production: 100 200 kg/h
- Capture rate: ~ 85 95 %

- Designed and constructed by Aker Solutions / Aker **Carbon Capture**
- First put in operation in 2008
- Has the ACC[™] technology
- Includes all functions as found in our large-scale systems
- Built for operation at a wide range of flue gases and locations
- Consists of 6 units that can be easily transported for testing our CO₂ capture technology on actual sources of flue gas
- Main purposes of the MTU:
 - Qualify flue gas for ACC[™] and develop full scale projects
 - Development and testing of new technology and 0 solvents

The Mobile Test Unit (MTU)

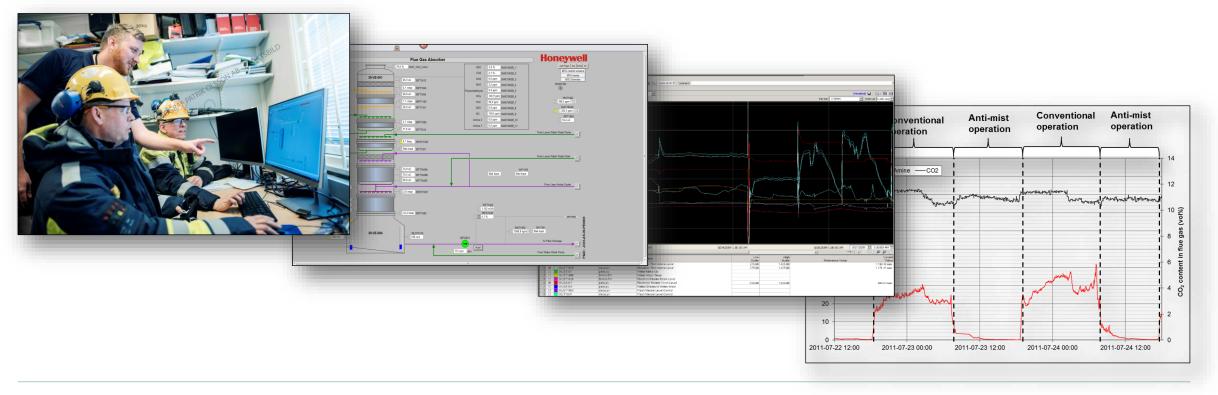
3 process units

- Main process container: 40 ft. container
- Direct Contact Cooler (DCC): 40 ft. skid
- Amine reclaimer unit (ARU): 20 ft. container

4 auxiliary containers

- 20 ft. container for tools, PPE, etc.
- 40 ft. container for column sections
- 40 ft. container for fans, crates etc.
- 8 ft. transport container for chemicals

1 control room barrack with servers

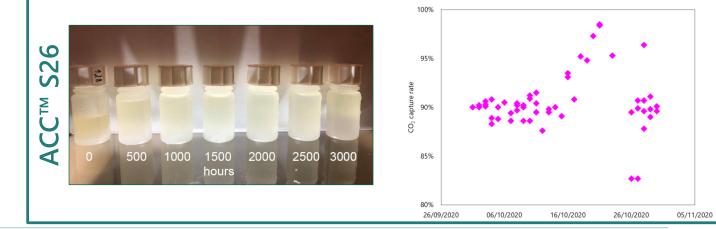

Absorber: D = 0.4 m, H = 18 m absorption + two water wash sections + 1 acid wash section

Desorber: D = 0.32 m, H = 8 m stripping section + 1 water wash section

The Mobile Test Unit (MTU)

- Easily accessible via internet server from anywhere in the world
- Contains real-time details and data from the MTU CO₂ capture process
- Enables advanced trending and analysis of data for process development and optimisation


Inside an MTU campaign


Typical MTU campaign structure

- Thousands of hours of operation on real flue gas
 - Continuous emission monitoring
 - Regular inventory analysis
 - Dedicated emission campaign
 - Process optimisation
- Technology risk reduction

ACC[™] S26 campaign at Preem Lysekil's Refinery

- Spot-checks at different capture rates
- Better energy performance than MEA
- Good solvent stability
- Low corrosivity
- Low emissions
- Low degradation

Aker Carbon Capture's Feasibility Study at the Preemraff Lysekil Refinery

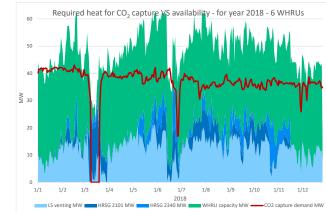
Preem CCS Full scale CO₂ capture feasibility study

- Objectives
 - Develop a design for a carbon capture, liquefaction and
 - intermediary storage facility at the Preemraff Lysekil facility:
 - With 90% CO₂ capture rate from the Hydrogen Production Unit (HPU) flue gas
 - Equivalent to capture 600 000 tpy CO₂ (8 500 operating hours per year)
 - Feasibility study ~ cost estimate ±40% accuracy

	Flue gas characteristics
Flow rate (Nm ³ /h)	184 000 – 212 000
CO ₂ (mol%)	18.6 – 21.5

Scope

• CO₂ capture


- including all main equipment
- preconditioning and capture of CO₂ from the flue gas
- solvent handling and regeneration
- CO₂ conditioning
 - compression, liquefaction, drying and inerts removal
 - intermediate storage
 - ship loading system at the Preemraff harbour
- Main utilities assessments/availability/solutions
 - heat demand/availability
 - cooling demand/solutions

External Heat Recovery for the Capture Unit

- Heat duty from ACC's process is 2.0 GJ per ton CO₂ captured
- This demand is covered excess and residual waste heat sources: covers ACC's heat duty
- The capture plant can operate fully on waste heat:
 - No additional steam demand from the Preemraff Lysekil refinery
 - Cost effective solution!
- Project schedule:
 - 8 months' FEED
 - 40 months' EPC phase inclusive of 3 months for commissioning

Evaluation of Aker Carbon Capture at Preemraff Lysekil

Low risk from a technology perspective

 Aker Carbon Capture's ACC[™] performances were demonstrated during 3 800 hours of onsite operation

Low risk from an environmental perspective

 Aker Carbon Capture's ACC[™] solvent S26 showed low to negligible emissions and very low degradation rates throughout the 3 800 hours of operation

Applicable layout

 The feasibility study confirms that, a full scale CO₂ capture plant for 90% CO₂ capture from Preemraff Lysekil HPU flue gas can fit well within the current site

Cost effective solution

The feasibility study illustrated how heat integration with the Preemraff Lysekil plant could provide substantial OPEX gains making this project cost attractive

Copyright and disclaimer

Copyright

Copyright of all published material including photographs, drawings and images in this document remains vested in Aker Carbon Capture Norway AS and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without written prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.

Disclaimer

This presentation includes and is based, inter alia, on forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. These statements and this presentation are based on current expectations, estimates and projections about global economic conditions, the economic conditions of the regions and industries that are major markets for Aker Carbon Capture Norway AS and Aker Carbon Capture Norway AS's (including subsidiaries and affiliates) lines of business. These expectations, estimates and projections are generally identifiable by statements containing words such as "expects", "believes", "estimates" or similar expressions. Important factors that could cause actual results to differ materially from those expectations include, among others, economic and market conditions in the geographic areas and industries that are or will be major markets for Aker Carbon Capture Norway AS's businesses, market acceptance of new products and services, changes in governmental regulations, interest rates, fluctuations in currency exchange rates and such other factors as may be discussed from time to time in the presentation. Although Aker Carbon Capture Norway AS believes that its expectations and the presentation are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the presentation. Aker Carbon Capture Norway AS is making no representation or warranty, expressed or implied, as to the accuracy, reliability or completeness of the presentation, and neither Aker Carbon Capture Norway AS nor any of its directors, officers or employees will have any liability to you or any other persons resulting from your use.

AKER CARBON CAPTURE